
CS2541W Database Systems & Team Projects - Wood w/ Parmer updates

Normal Forms - Reference

1

Second Normal Form: For every X → A that holds over 
relationship schema R, where A is a non-prime attribute 

1. either A ∈ X (it is trivial), or 
2. X is a superkey for R, or 
3. X is transitively dependent on a super key R

Easier to think of the opposite: X cannot be a partial candidate 
key for R
﹘ Says nothing about non-prime to non-prime dependencies!

Third Normal Form (3NF): For every X → A that holds over 
relationship schema R, 

1. either A ∈ X (it is trivial), or 
2. X is a superkey for R, or 
3. A is a member of some candidate key for R

Easier to think of: X must be a full candidate key, unless A itself 
is a part of a candidate key 

“Every non-key attribute must provide a fact about the Key, the 
whole Key, and nothing but the Key… so help me Codd”

First Normal Form (1NF): Attributes should be atomic and 
tables should have no repeating groups

Superkey of R: A (possibly larger than 
necessary) set of attributes that is sufficient to 
uniquely identify each tuple in r(R)

Candidate Key of R: A “minimal” superkey. 

Primary Key: A specific Candidate Key chosen 
to represent a relation/table.

Non-prime: An attribute that is not part of any 
candidate key

Functional Dependencies (FD)
X → Y : "X determines Y" / "Y is dependent on X"
where X and Y are sets of attributes

The Closure of F (denoted F+) is the set of all FDs:
 {X → Y | X → Y  is derivable from F by Armstrong’s Axioms}

Two sets of dependencies F and G are equivalent if F+=G+ 

Armstrong’s Axioms: where A, B, C are sets of attributes
Reflexive rule: if B ⊆ A, then A → B 
Augmentation rule: if A → B, then C A →  C B
Transitivity rule:  if A → B, and B → C, then A →  C

Union rule: If A → B and A → C,  then A → B C
Decomposition rule: If A → B C, then A → B and A → C
Pseudotransitivity rule:If A → B and C B → D, then A C → D

Lossless Decomposition Test: R1, R2 is a 
lossless join decomposition of R with respect to 
F  if and only if at least one of the following 
dependencies is in F+

1. (R1 ∩ R2) → R1 – R2
2. (R1 ∩ R2) → R2 – R1

Dependency Preservation: After 
decomposition from R to R1 … Rn, the closure 
of FDs of all R1…Rn must be equivalent to that 
of R

Boyce-Codd Normal Form (BCNF): For every X → A that holds 
over relationship schema R, 

1. either A ∈ X (it is trivial), or 
2. X is a superkey for R



CS2541W Database Systems & Team Projects - Wood w/ Parmer updates

Normal Forms - Practice

2

Q1: Consider a Relation R3 = (A, B, C, D, E, F) which has the following functional dependencies F:
A -> BC
CD -> E
CD -> F
B -> F

Which of the following must also hold:
1. A -> B
2. A -> C
3. A -> E
4. A -> F
5. C -> E
6. AD -> E

Q2: What Attributes can be used to define a Candidate Key for R3 (above)?

Q3: Consider the Relation R4 = (A,C,B,D,E), with Functional Dependencies: 
A -> B
C -> D

What is the Candidate Key for R4? Which normal forms does this satisfy?

Q4: Consider the Relation R5 = (V, W, X, Y, Z), with the following functional dependencies:
V -> X
WY -> X
VWY -> Z

In this relation, (V, W, Y) is the Candidate Key.  What normal form does R5 satisfy? You may assume that all tuples 
are unique and attributes are atomic.

Q5: Consider the relation R6 = (A, B, C, D), with the following functional dependencies:
AB -> C
C -> D

What is the Candidate Key for this relation? 

What normal forms does R6 satisfy? You may assume that all tuples are unique and attributes are atomic.

If instead we had functional dependencies:
   AB -> CD
   D -> A
Which normal forms does R6 now satisfy?


