THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

5a. Functional Dependencies

CSCI 2541W Database Systems & Team Projects

Gabe

Slides adapted from Profs. Bhagi Narahari, Tim Wood, and Rahul Simha, and book by Silberschatz, Korth, and Sudarshan

Good and Bad **Schemas**

Functional Dependencies **Normal Forms based on Functional Dependencies**

Normal Form Examples: 1NF

1NF: Attributes should be atomic and tables should have no repeating groups

Normal Form Examples: 2NF

2NF: No value in a table should be dependent on only **part** of a key that uniquely identifies a row

VS

1NF

Normal Form Examples: 3NF

3NF: No value should be able to be dependent on another non-key field

BAD: Age is based on **Birthday** (non-key)

Summary

1NF: ensures atomicity of cells and prevents repetition of identical column types

2NF: prevents data across rows

3NF: prevents repetition of data within+across rows

Dependencies

How can we **formally represent dependencies** between Attributes in a Relation?

Functional Dependencies

Use **functional dependencies!** (abbreviated **FD**)

We say a set of attributes **X** functionally determines an attribute **Y** if *given the values of X we always know the only possible value of Y*.

- ﹘ Notation: **X → Y**
- ﹘ X **functionally determines** Y
- ﹘ Y is **functionally dependent** on X

Example:

- $-$ GWID \rightarrow Name
- ${GWD, CourselD, Semester, Year} \rightarrow Grade$

Sets of Functional Dependencies

Some more functional dependencies

- $-$ {GWID} \rightarrow {NAME, ADDRESS, MAJOR}
- $-$ {MAJOR} \rightarrow {DEPT_NAME, DEPT_CHAIR}

From above dependencies, we can infer $-$ {GWID} \rightarrow {DEPT_NAME, DEPT_CHAIR}

We can do math on functional dependencies!

A functional dependency "holds" if it must be true for all legal relations

Armstrong's Axioms: where A, B, C are sets of attributes

- **Reflexive rule:** if $B \subseteq A$, then $A \rightarrow B$ (if B is subset of A)
- ﹘ **Augmentation rule**: if A → B, then C∪A → C∪B
- **Transitivity rule:** if $A \rightarrow B$, and $B \rightarrow C$, then $A \rightarrow C$

These rules are

﹘ Sound and complete — generate all functional dependencies that hold. $\{GWID\} \rightarrow \{Name, Address, Major\}$ ${Major} \rightarrow {Dept_name}$, Dept_Chair} ${GWD, CourselD, Semester, Year} \rightarrow Grade$

Armstrong's Axioms: where A, B, C are sets of attributes

- \blacksquare **Reflexive rule:** if $B \subseteq A$, then $A \rightarrow B$ (if B is subset of A)
- ﹘ **Augmentation rule**: if A → B, then C∪A → C∪B
- **Transitivity rule**: if $A \rightarrow B$, and $B \rightarrow C$, then $A \rightarrow C$

Given:

 $\{GWID\} \rightarrow \{Nam$ $[Major] \rightarrow [Dent \; Name \; Dent \; Chair]$ $VID.$ {GWID} → {Name, Address, Major} {Major} → {Dept_Name, Dept_Chair} {GWID, CourseID, Semester, Year} → Grade

R:{GWID, CourseID, Semester, Year} → {GWID, Year} A:{Major, Name, Address} →

 {Dept_Name, Dept_Chair, Name, Address} T:{GWID} \rightarrow {Name, Address, Major} \rightarrow {Dept_Name, Dept_Chair, Name, Address}

Armstrong's Axioms: where A, B, C are sets of attributes

- \blacksquare **Reflexive rule:** if B ⊆ A, then A \rightarrow B (if B is subset of A)
- ﹘ **Augmentation rule**: if A → B, then C∪A → C∪B
- **Transitivity rule:** if $A \rightarrow B$, and $B \rightarrow C$, then $A \rightarrow C$

These rules are

﹘ Sound and complete — generate all functional dependencies that hold.

Bonus rules to make life easier:

- \blacksquare **Union rule**: If A \rightarrow B holds and A \rightarrow C holds, then A \rightarrow BUC holds.
- ﹘ **Decomposition rule**: If A → B∪C holds, then A → B holds and $A \rightarrow C$ holds.
- ﹘ **Pseudotransitivity rule**:If A → B holds and C∪B → D holds, then $A\cup C \rightarrow D$ holds.

Armstrong's Axioms: where A, B, C are sets of attributes

- **Reflexive rule: if B ⊆**
- **△ Augmentation rule**:
- **Transitivity rule: if A**

These rules are

- Sound and complete hold.

From now on: will *shorthand* B∪C as BC

Bonus rules to make life easier:

- \blacksquare **Union rule**: If A \rightarrow B holds and A \rightarrow C holds, then A \rightarrow BUC holds.
- ﹘ **Decomposition rule**: If A → B∪C holds, then A → B holds and $A \rightarrow C$ holds.
- ﹘ **Pseudotransitivity rule**:If A → B holds and C∪B → D holds, then $A\cup C \rightarrow D$ holds.

Definition: Closure of a Set of FD's

Defn. Let F be a set of FD's. Its **closure**, **F+**, is the set of all FD's:

${X \rightarrow Y \mid X \rightarrow Y}$ is derivable from F by **Armstrong's Axioms}**

Two sets of dependencies F and G are equivalent if F+=G+

- i.e., their closures are equal
- i.e., the same sets of FDs can be inferred from each

What FDs can we infer?

 $R = (A, B, C, G, H, I)$ $F = \{ A \rightarrow B$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H$

Reflexive rule: if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$

Augmentation rule: if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$

Transitivity rule: if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$

 $R = (A, B, C, G, H, I)$ $F = \{ A \rightarrow B$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H$

Reflexive rule: if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ **Augmentation rule**: if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ **Transitivity rule**: if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$

A few members of F+ include: $- A \rightarrow H$

 $- AG \rightarrow I$

 $- CG \rightarrow HI$

$$
R = (A, B, C, G, H, I)
$$

\n
$$
F = \{A \rightarrow B
$$

\n
$$
A \rightarrow C
$$

\n
$$
CG \rightarrow H
$$

\n
$$
CG \rightarrow I
$$

\n
$$
B \rightarrow H}
$$

Reflexive rule: if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ **Augmentation rule**: if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ **Transitivity rule**: if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$

A few members of F+ include:

 $- A \rightarrow H$

by transitivity from $A \rightarrow B$ and $B \rightarrow H$

 $- AG \rightarrow I$

 $- CG \rightarrow H1$

$$
R = (A, B, C, G, H, I)
$$

\n
$$
F = \{A \rightarrow B
$$

\n
$$
A \rightarrow C
$$

\n
$$
CG \rightarrow H
$$

\n
$$
CG \rightarrow I
$$

\n
$$
B \rightarrow H}
$$

Reflexive rule: if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ **Augmentation rule**: if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ **Transitivity rule**: if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$

A few members of F+ include:

 $- A \rightarrow H$

by transitivity from $A \rightarrow B$ and $B \rightarrow H$

 $- AG \rightarrow I$

by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$

 $- CG \rightarrow H1$

```
R = (A, B, C, G, H, I)F = \{ A \rightarrow B \}A \rightarrow CCG \rightarrow HCG \rightarrow IB \rightarrow H}
```
Reflexive rule: if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ **Augmentation rule**: if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ **Transitivity rule**: if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$

A few members of F+ include:

 $- A \rightarrow H$

by transitivity from $A \rightarrow B$ and $B \rightarrow H$

 $- AG \rightarrow I$

by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$

 $- CG \rightarrow H1$

by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$ (note $CGCG \rightarrow CGI$ is $CG \rightarrow CGI)$, and augmenting of $CG \rightarrow H$ to infer CGI $\rightarrow H$ I, and then transitivity (CG \rightarrow CGI \rightarrow HI).

This derives the *Union* rule!

Functional Dependencies and Keys

A Candidate Key is a minimal set of attributes which are sufficient to uniquely identify each tuple in a relation

﹘ All other attributes must be functionally dependent on the set of attributes that make up the Candidate Key.

Thus a candidate key must be a minimal set of attributes which can appear on the left hand side of functional dependencies, but will produce a closure that includes all other attributes on the right hand side

$$
\{A,\,B\}\longrightarrow\!\{C,\,D,\,E\}
$$

Functional Dependencies and Keys

A candidate key must be a minimal set of attributes which can appear on the left hand side of functional dependencies, but will produce a closure that includes all other attributes on the right hand side

What is a candidate key for R?

```
R = (A, B, C, G, H, I)F = \{ A \rightarrow BA \rightarrow CCG \rightarrow HCG \rightarrow IB \rightarrow H
```
Functional Dependencies and Keys

A candidate key must be a minimal set of attributes which can appear on the left hand side of functional dependencies, but will produce a closure that includes all other attributes on the right hand side

What is a candidate key for R?

```
R = (A, B, C, G, H, I)F = \{ A \rightarrow BA \rightarrow CCG \rightarrow HCG \rightarrow IB \rightarrow H
```
Candidate Key: (A, G) Non-Prime Attribs: (B,C,G,H,I)

Functional Department

A candidate key must b appear on the left hand produce a closure that hand side

What is a candidate key

 $R = (A, B, C, G, H, I)$ $F = \{ A \rightarrow B$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H$

Pseudotransitivity rule:

If $A \rightarrow B$ holds and $CB \rightarrow D$ holds, then $AC \rightarrow D$ holds.

How? A→C and CG→H Augmentation: AG→CG Transitivity: AG →CG→H

> Candidate Key: (A, G) Non-Prime Attribs: (B,C,G,H,I)

Good and Bad **Schemas**

Functional Dependencies **Normal Forms based on Functional Dependencies**

Redefining 2NF No value in a table should be dependent on only **part** of a key that uniquely identifies a row

Using Functional Dependencies and Closures lets us more precisely define our Normal Forms

Second Normal Form: For every $X \rightarrow A$ that holds over relationship schema **R**, where A is a non-prime attribute

- (i.e., A is not an attribute in any candidate key)
- 1. either **A** ∈ **X** (it is trivial), or
- 2. **X** is a superkey for **R**, or
- 3. **X** is transitively dependent on a super key R

Easier to think of the opposite: There cannot be **X → A** where X is a partial candidate key for R

Says nothing about non-prime to non-prime dependencies!

2NF Violations

2NF Violations

ID -> {**First Name, LastName**} Violates 2NF since **ID** is a partial Candidate Key

No 2NF violation

Redefining 3NF

Third Normal Form (3NF): For every $X \rightarrow A$ that holds over relationship schema **R**,

- 1. either **A** ∈ **X** (it is trivial), or
- 2. **X** is a superkey for **R**, or
- 3. **A** is a member of some key for **R**

Easier to think of: **X** must be a full candidate key, unless A itself is a part of a candidate key

"Every non-key attribute must provide a fact about the Key, the whole Key, and nothing but the Key... so help me Codd"

3NF Violations

 $C \rightarrow$ F,S,B,A,F

Birthday->Age holds, but **Birthday** is not a superkey

 $T, Y \rightarrow W$, WB $W \rightarrow WB$

Winner -> Birthplace holds, but **Winner** is not a superkey

Normal Forms 1-3

1NF: Attributes should be atomic and tables should have no repeating groups

- *Prevents messiness within a cell and repetition of rows*
- **2NF:** There cannot be $X \rightarrow A$ where X is a partial candidate key for R
	- Doesn't forbid non-prime to non-prime dependencies
	- *Prevents repetition of cells across rows*

3NF: There cannot be $X \rightarrow A$ where X is not a full candidate key for R (unless A is a Key)

- ﹘ Only allows dependencies on Keys
- *Prevents repetition of data within a row*

Good and Bad **Schemas**

Functional Dependencies

Even more normal forms!

Normal Forms 1-3

1NF: Attributes should be atomic and tables should have no repeating groups

- *Prevents messiness within a cell and repetition of rows*
- **2NF**: There cannot be $X \rightarrow A$ where X is a partial candidate key for R
	- Doesn't forbid non-prime to non-prime dependencies
	- *Prevents repetition of cells across rows*
- **3NF:** There cannot be $X \rightarrow A$ where X is not a full candidate key for R (unless A is a Key)
	- Only allows dependencies on Keys
	- *Prevents repetition of data within a row*

Normal Forms 1-3

1NF: Attributes should be atomic and tables should have no re - Prevent *Prevent* Preview of the Isometimes of rows **2NF**: There can be a set of α **artial** candidate — Doesn't forbid non-prime to non-prime to non-prime to the non-prime dependence of \mathbb{R}^n *Prevents repetition of cells across rows* **3NF**: There **cannot be a cannot be a full** candidate $-$ Only all *Prevents repetition of data within a row* Preview of the (sometimes unrealistic) goal: $R = (A, B, C, D, E, F)$ has FD+: ABC **→** DEF

Normal Form

Normal form reference:

- ﹘ 2NF: Cannot have partial Key on left hand side (LHS)
- ﹘ 3NF: Meet 2NF and LHS must be full Candidate Key or RHS must be a key

Functional Dependencies

 $ID \rightarrow FirstName$ ID, Cid → Num, Grade Num → Subj

What normal form is this?

Normal Form

Normal form reference:

- ﹘ 2NF: Cannot have partial Key on left hand side (LHS)
- ﹘ 3NF: Meet 2NF and LHS must be full Candidate Key or RHS must be a key

Functional Dependencies

ID → FirstName partial key ID violates 2NF! ID, Cid → Num, Grade Num → Subj non-prime LHS would also violate 3NF!

Only meets 1NF

How to Judge Decomposition?

ID \rightarrow FirstName ID, Cid → Num, Grade $Num \rightarrow Subj$

Lossless Decomposition test:

- ﹘ **R1**, **R2** is a lossless join decomposition of **R** with respect to **F iff** at least one of the following dependencies is in **F+**
- ﹘ **(R1 ∩ R2) → R1 R2**
- ﹘ **(R1 ∩ R2) → R2 R1**

Lossless Decomposition

- ﹘ **R1**, **R2** is a lossless join decomposition of **R** with respect to **F iff** at least one of the following dependencies is in **F+**
- ﹘ **(R1 ∩ R2) → R1 R2**
- ﹘ **(R1 ∩ R2) → R2 R1**

Lossless Decomposition

﹘ **(R1 ∩ R2) → R2 – R1**

Dependency Preservation

We also must maintain dependences

After decomposition from **R** to **R1 … Rn**, the closure of FDs of all **R1…Rn** must be equivalent to that of **R**

R1 = ID, FirstName, CID **R2 = CID,** Sub, Num, Grade

or

ID → FirstName ID, Cid → Num, Grade Num → Subj

 $R3 = 1D$, FirstName **R4 = ID, CID,** Sub, Num, Grade

Dependency Preservation

We also must maintain dependences

After decomposition from **R** to **R1 … Rn**, the closure of FDs of all **R1…Rn** must be equivalent to that of **R**

R1 = ID, FirstName, CID **R2 = CID,** Sub, Num, Grade

or

 $R1, R2$ will lose the FD: $\|$ Num \rightarrow Subj ID,CID -> Num, Grade

R3 = ID, FirstName **R4 = ID, CID,** Sub, Num, Grade

ID → FirstName ID, Cid → Num, Grade

> R3,R4 will maintain all FDs (why Sub?)

3NF

It is **always possible** to decompose a relation R into a set of relations R1…Rn which is **dependency preserving** and **lossless** that is in 3NF

> 3NF is the baseline for acceptable DB normalization in practice! Required!

> > but 3NF is not perfect…

When does 3NF fail?

Suppose we want to store addresses:

Meets 3NF since LHS is a full Key **or** RHS is a Key

3NF: There cannot be $X \rightarrow A$ where X is not a full candidate key for R **(unless A is a Key)**

When does 3NF fail?

ADDR_INFO(**CITY**, **ADDRESS**, **ZIP**) $\{CITY, ADDRESS\} \rightarrow ZIP$ ${ZIP} \rightarrow {CITY}$

3NF: There cannot be $X \rightarrow A$ where X is not a full candidate key for R **(unless A is a Key)**

When does 3NF fail?

ADDR_INFO(**CITY**, **ADDRESS**, **ZIP**) $\{CITY, ADDRESS\} \rightarrow ZIP$ ${ZIP} \rightarrow {CITY}$

3NF does not prevent insertion/update of tuples which violate our FDs!

3NF vs BCNF

Third Normal Form (3NF): For every $X \rightarrow A$ that holds over relationship schema **R**,

- 1. either $A \in X$ (it is trivial), or
- 2. **X** is a superkey for **R**, or
- 3. **A** is a member of some key for **R**

Option 3 can result in update anomalies!

Boyce-Codd Normal Form (BCNF) resolves this issue:

For every $X \rightarrow A$ that holds over relationship schema R,

- 1. either $A \in X$ (it is trivial), or
- 2. **X** is a superkey for **R**

3NF vs BCNF

BCNF

BCNF is stricter than 3NF

- ﹘ If a relation is in BCNF, it is also in 3NF;
- ﹘ if it is not in 3NF, it is not in BCNF

Note:

- ﹘ There are polynomial time algorithms **guaranteed to provide a lossless, dependency preserving decomposition** into 3NF
- ﹘ **but** a **dependency preserving** decomposition into BCNF **may not exist**, and no polynomial time algorithm for **lossless decomposition** is known.

Normalization Summary

Functional Dependencies: Capture the dependencies between attributes

Normalization: Provides a schema that ensures functional dependencies will be kept consistent, without losing data

Normal Forms: Try to achieve BCNF, but 3NF is OK in some cases (1NF/2NF -> bad design!)

2NF vs 3NF vs BCNF

Second Normal Form (2NF): For every $X \rightarrow A$ that holds over relationship schema **R**,

1. If **A** is a non-prime attribute, then **X** cannot be a partial Candidate Key

Third Normal Form (3NF): For every $X \rightarrow A$ that holds over relationship schema **R**,

- 1. either $A \subseteq X$ (it is trivial), or
- 2. **X** is a superkey for **R**, or
- 3. **A** is a member of some key for **R**

Option 3 can result in update anomalies!

Boyce-Codd Normal Form (BCNF) resolves this issue:

For every $X \rightarrow A$ that holds over relationship schema R,

1. either $A \subseteq X$ (it is trivial), or

2. **X** is a superkey for **R**