THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

## 2. Relational Model

### CSCI 2541 Database Systems & Team Projects

Gabe

adapted from Prof. Bhagi Narahari; Silberschatz, Korth, and Sudarshan; and Ramakrishnan, Gerhke, and Lawrence, Wood & Ch

## Admin Stuff

HW 1 due yesterday

Test cases should give you idea of your grade

Optional RPS HW due Jan 23

Read our materials/instructions carefully

Read the syllabus for course policies

Watch Slack for ways to **#engage** and ask **#questions** 

Previously...

Structure that is independent of the underlying file formats Queries to flexibly read, update, and delete information Transactions that provide guarantees about multi-user consistency Relational Model Definitions

#### Constraints and Relationships

Lab!

...Next.

### Data

Let's store some information about professors

– How?

### Tables

A Table is a set of rows and columns...

- A column defines an attribute that can have different values
- A row represents related attributes that together represent a data element

Instructor

| ntable     | dept_name                                                                  | salary                                                                                                                                                                            | course_                                                                                                                                                                                                                                             |
|------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Srinivasan | Comp. Sci.                                                                 | 65000                                                                                                                                                                             | BIO-10                                                                                                                                                                                                                                              |
| Wu         | Finance                                                                    | 90000                                                                                                                                                                             | BIO-30                                                                                                                                                                                                                                              |
| Mozart     | Music                                                                      | 40000                                                                                                                                                                             | BIO-39                                                                                                                                                                                                                                              |
| Einstein   | Physics                                                                    | 95000                                                                                                                                                                             | CS-101                                                                                                                                                                                                                                              |
| El Said    | History                                                                    | 60000                                                                                                                                                                             | CS-190                                                                                                                                                                                                                                              |
| Gold       | Physics                                                                    | 87000                                                                                                                                                                             | CS-315                                                                                                                                                                                                                                              |
| Katz       | Comp. Sci.                                                                 | 75000                                                                                                                                                                             | CS-319                                                                                                                                                                                                                                              |
| Califieri  | History                                                                    | 62000                                                                                                                                                                             | EE-181                                                                                                                                                                                                                                              |
| Singh      | Finance                                                                    | 80000                                                                                                                                                                             | FIN-20                                                                                                                                                                                                                                              |
| Crick      | Biology                                                                    | 72000                                                                                                                                                                             | HIS-35                                                                                                                                                                                                                                              |
| Brandt     | Comp. Sci.                                                                 | 92000                                                                                                                                                                             | MU-19                                                                                                                                                                                                                                               |
| Kim        | Elec. Eng.                                                                 | 80000                                                                                                                                                                             | PHY-1                                                                                                                                                                                                                                               |
|            | MableSrinivasanWuMozartEinsteinEl SaidGoldKatzCalifieriSinghCrickBrandtKim | Mabledept_nameSrinivasanComp. Sci.WuFinanceMozartMusicEinsteinPhysicsEl SaidHistoryGoldPhysicsKatzComp. Sci.CalifieriHistorySinghFinanceCrickBiologyBrandtComp. Sci.KimElec. Eng. | nabledept_namesalarySrinivasanComp. Sci.65000WuFinance90000MozartMusic40000EinsteinPhysics95000El SaidHistory60000GoldPhysics87000KatzComp. Sci.75000CalifieriHistory62000SinghFinance80000CrickBiology72000BrandtComp. Sci.92000KimElec. Eng.80000 |

Course

| course_id      | title Table                | dept_name  | credits |
|----------------|----------------------------|------------|---------|
| BIO-101        | Intro. to Biology          | Biology    | 4       |
| <b>BIO-301</b> | Genetics                   | Biology    | 4       |
| BIO-399        | Computational Biology      | Biology    | 3       |
| CS-101         | Intro. to Computer Science | Comp. Sci. | 4       |
| CS-190         | Game Design                | Comp. Sci. | 4       |
| CS-315         | Robotics                   | Comp. Sci. | 3       |
| CS-319         | Image Processing           | Comp. Sci. | 3       |
| CS-347         | Database System Concepts   | Comp. Sci. | 3       |
| EE-181         | Intro. to Digital Systems  | Elec. Eng. | 3       |
| FIN-201        | Investment Banking         | Finance    | 3       |
| HIS-351        | World History              | History    | 3       |
| MU-199         | Music Video Production     | Music      | 3       |
| PHY-101        | Physical Principles        | Physics    | 4       |

### Tables = Relations

### A Relation is a set of tuples and attributes

- Set: an unordered list of unique elements
- Tuple: a sequence of values
- Attribute: a named type with values in a domain

#### **Instructor Relation**

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 12121 | Wu         | Finance    | 90000  |
| 15151 | Mozart     | Music      | 40000  |
| 22222 | Einstein   | Physics    | 95000  |
| 32343 | El Said    | History    | 60000  |
| 33456 | Gold       | Physics    | 87000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 58583 | Califieri  | History    | 62000  |
| 76543 | Singh      | Finance    | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 98345 | Kim        | Elec. Eng. | 80000  |

#### Course Relation

Why?

| course_id | title                      | dept_name  | credits |
|-----------|----------------------------|------------|---------|
| BIO-101   | Intro. to Biology          | Biology    | 4       |
| BIO-301   | Genetics                   | Biology    | 4       |
| BIO-399   | Computational Biology      | Biology    | 3       |
| CS-101    | Intro. to Computer Science | Comp. Sci. | 4       |
| CS-190    | Game Design                | Comp. Sci. | 4       |
| CS-315    | Robotics                   | Comp. Sci. | 3       |
| CS-319    | Image Processing           | Comp. Sci. | 3       |
| CS-347    | Database System Concepts   | Comp. Sci. | 3       |
| EE-181    | Intro. to Digital Systems  | Elec. Eng. | 3       |
| FIN-201   | Investment Banking         | Finance    | 3       |
| HIS-351   | World History              | History    | 3       |
| MU-199    | Music Video Production     | Music      | 3       |
| PHY-101   | Physical Principles        | Physics    | 4       |

### Schema

Defines the structure of one or more Relations

- A1, A2, ..., An are attributes
- R = (A1, A2, ..., An ) is a relation schema

#### Example: instructor = (ID, name, dept\_name, salary)

- A relation instance r defined over schema R is denoted by r (R).
- The current values of a relation are specified by a table
- An element t of relation r is called a tuple and is represented by a row in a table

### **Example DB Schema**

#### STUDENT

Name Student\_number Class Major

#### COURSE

| Course_name   Course_number   Credit_nours   Departmen | Course_name | Course_number | Credit_hours | Department |
|--------------------------------------------------------|-------------|---------------|--------------|------------|
|--------------------------------------------------------|-------------|---------------|--------------|------------|

#### PREREQUISITE

Course\_number | Prerequisite\_number

#### SECTION

| Section_identifier   Course_number   Semester   Year   Instructo |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

#### GRADE\_REPORT

Student\_number Section\_identifier Grade

## **Relational Model Definitions**

A **relation** is a table with columns and rows.

An **attribute** is a named column of a relation.

A **tuple** is a row of a relation.

A **domain** is a set of allowable values for one or more attributes.

The **degree** of a relation is the number of attributes it contains.

The **cardinality** of a relation is the number of tuples it contains.

### Definitions

Degree =

#### Cardinality =

### Help me fill these in!



## **Relation Property Summary**

- 1. Each relation name is unique
- No two relations have the same name

2. Each cell of the relation (value of a domain) contains exactly one atomic (single) value and cannot be empty... in practice SQL allows NULL

3. Each attribute of a relation has a distinct name

- 4. Values of an attribute are all from the same domain
- 5. Each tuple is distinct. There are no duplicate tuples
- Theoretically... in practice, SQL supports "bags" (allow duplicates)
- 6. Order of attributes is not important
  - Note difference from mathematical def of relations
  - Tuple (x,y) is not the same as (y,x) in mathematical definition
  - Reason: attribute names represent domain and can be reordered
- 7. Order of tuples is not important

#### Relational Model Definitions

### Constraints and Relationships

#### Lab!

### onwards...

### Constraints

Relation scheme defines the types and domain of all attributes

Can enforce constraints whenever tuples are added/modified

This can enforce many constraints to protect the integrity of your data

- Can't insert a string into an Integer type attribute
- A State field could limit domain to (AL, AK, AZ...WY)
- An SSN attribute must follow form (xxx-xx-xxxx)
- Price must be > 0.00
- ... but not all!
  - Application or "business logic" may not be feasible
  - Example: "An employee can't work more than 40 hours per week across all jobs"

## Keys

### Superkey of R:

 A set of attributes that is sufficient to uniquely identify each tuple in r(R)

| ID    | name dept_name |            | salary |
|-------|----------------|------------|--------|
| 22222 | Einstein       | Physics    | 95000  |
| 12121 | Wu             | Finance    | 90000  |
| 32343 | El Said        | History    | 60000  |
| 45565 | Katz           | Comp. Sci. | 75000  |
| 98345 | Kim            | Elec. Eng. | 80000  |
| 76766 | Crick          | Biology    | 72000  |
| 10101 | Srinivasan     | Comp. Sci. | 65000  |
| 58583 | Califieri      | History    | 62000  |
| 83821 | Brandt         | Comp. Sci. | 92000  |
| 15151 | Mozart         | Music      | 40000  |
| 33456 | Gold           | Physics    | 87000  |
| 76543 | Singh          | Finance    | 80000  |

## What is a superkey for this relation?

The *professor* relation

## Keys

### Superkey of R:

 A set of attributes that is sufficient to uniquely identify each tuple in r(R)

# What is a superkey for this relation?

| course_id      | sec_id | semester | year | building | room_number | time_slot_id |
|----------------|--------|----------|------|----------|-------------|--------------|
| BIO-101        | 1      | Summer   | 2017 | Painter  | 514         | В            |
| <b>BIO-301</b> | 1      | Summer   | 2018 | Painter  | 514         | А            |
| CS-101         | 1      | Fall     | 2017 | Packard  | 101         | Н            |
| CS-101         | 1      | Spring   | 2018 | Packard  | 101         | F            |
| CS-190         | 1      | Spring   | 2017 | Taylor   | 3128        | Е            |
| CS-190         | 2      | Spring   | 2017 | Taylor   | 3128        | А            |
| CS-315         | 1      | Spring   | 2018 | Watson   | 120         | D            |
| CS-319         | 1      | Spring   | 2018 | Watson   | 100         | В            |
| CS-319         | 2      | Spring   | 2018 | Taylor   | 3128        | С            |
| CS-347         | 1      | Fall     | 2017 | Taylor   | 3128        | А            |
| EE-181         | 1      | Spring   | 2017 | Taylor   | 3128        | С            |
| FIN-201        | 1      | Spring   | 2018 | Packard  | 101         | В            |
| HIS-351        | 1      | Spring   | 2018 | Painter  | 514         | С            |
| MU-199         | 1      | Spring   | 2018 | Packard  | 101         | D            |
| PHY-101        | 1      | Fall     | 2017 | Watson   | 100         | Α            |

#### The section relation

## Candidate and Primary Keys

### Superkey of R:

A set of attributes that is sufficient to uniquely identify each tuple in r(R)

### Candidate Key of R: A "minimal" superkey

- A Candidate Key is a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey (does not possess the superkey uniqueness property)
- A Candidate Key is a Superkey but opposite may not be true

**Primary Key**: The Candidate Key chosen to represent a relation/table

### Super vs Candidate Key

#### Possible superkeys:

- <ID, name>,
- \_ <ID, dept\_name>,
- <ID, name, dept\_name, salary>

#### Candidate Key must be minimal:

\_ <ID>

– <course\_id, sec\_id, semester, year>

Primary keys are listed first and underlined when showing the schema

classroom(building, <u>room\_number</u>, capacity) department(<u>dept\_name</u>, building, budget) course(<u>course\_id</u>, title, dept\_name, credits) instructor(<u>ID</u>, name, dept\_name, salary)

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |

| course_id      | sec_id | semester | year | building | room_number | time_slot_id |
|----------------|--------|----------|------|----------|-------------|--------------|
| BIO-101        | 1      | Summer   | 2017 | Painter  | 514         | В            |
| <b>BIO-301</b> | 1      | Summer   | 2018 | Painter  | 514         | А            |
| CS-101         | 1      | Fall     | 2017 | Packard  | 101         | Н            |
| CS-101         | 1      | Spring   | 2018 | Packard  | 101         | F            |
| CS-190         | 1      | Spring   | 2017 | Taylor   | 3128        | E            |
| CS-190         | 2      | Spring   | 2017 | Taylor   | 3128        | Α            |
| CS-315         | 1      | Spring   | 2018 | Watson   | 120         | D            |
| CS-319         | 1      | Spring   | 2018 | Watson   | 100         | В            |
| CS-319         | 2      | Spring   | 2018 | Taylor   | 3128        | С            |
| CS-347         | 1      | Fall     | 2017 | Taylor   | 3128        | Α            |
| EE-181         | 1      | Spring   | 2017 | Taylor   | 3128        | С            |
| FIN-201        | 1      | Spring   | 2018 | Packard  | 101         | В            |
| HIS-351        | 1      | Spring   | 2018 | Painter  | 514         | С            |
| MU-199         | 1      | Spring   | 2018 | Packard  | 101         | D            |
| PHY-101        | 1      | Fall     | 2017 | Watson   | 100         | А            |

## Picking a Primary Key

Every Relation must have a Primary Key

How to pick from the candidates?

- Based on business logic
- Is "Name" unique? depends on your business/application!
- Ideally Primary Key should be something that never/rarely changes

Primary Key is another type of **constraint** 

DB will enforce uniqueness of the Primary Key attributes

## The magic of Databases

#### A database helps us **connect** multiple Relations

#### STUDENT

Name Student\_number Class Major

#### COURSE

| Course_name | Course_number | Credit_hours | Department |
|-------------|---------------|--------------|------------|
|             |               |              |            |

#### PREREQUISITE

Course\_number | Prerequisite\_number

#### SECTION

| Section_identifier | Course_number | Semester | Year | Instructor |
|--------------------|---------------|----------|------|------------|
|                    |               |          |      |            |

#### GRADE\_REPORT

Student\_number | Section\_identifier | Grade

How are these Relations connected to each other?

## The magic of Databases

A database helps us **connect** multiple Relations



Relations

## Foreign Keys

Defines a relationship connecting tuples in two relations

- The referencing relation and the referenced relation
- Defines another type of constraint **Referential Integrity**
- Foreign Key constraints must connect to the Primary Key in the referenced relation

**GRADE\_REPORT.Student\_number** must match a value in **STUDENT.Student number** 

PREREQUISITE.Course number and **Prequisite\_number** must match value in **COURSE.Course\_number, etc** 

STUDENT

Name Student number Class Major

#### COURSE

Credit hours Department Course number Course name

#### PREREQUISITE

Course number Prerequisite number

#### SECTION

Semester Section identifier Course number Year Instructor

**GRADE REPORT** 

Section\_identifier Student number Grade

## **Referential Integrity**

Only students listed in the Students relation should be allowed to enroll for courses.

- If a value of sid appears in Enrollment relation then it MUST appear in Student relation
  - "Only students can take courses"
  - Database is automatically enforcing application requirements for you... can your Array do that?

#### Enrollment

|       |             | Student |  |       |       |            |     |     |
|-------|-------------|---------|--|-------|-------|------------|-----|-----|
| sid   | cid         | grade   |  |       |       |            |     |     |
| 53666 | Jazz101     | C ~     |  | sid   | name  | login      | age | gpa |
| 53666 | Reggae203   | В –     |  | 53666 | Jones | jones@cs   | 18  | 3.4 |
| 53650 | Topology112 | A       |  | 53688 | Smith | smith@eecs | 18  | 3.2 |
| 53666 | History105  | B       |  | 53650 | Smith | smith@math | 19  | 3.8 |

## Full University Schema Diagram



Why do we use multiple attributes in a Primary Key?

- section(<u>course id</u>, <u>sec id</u>, <u>semester</u>, <u>year</u>, building, ...)
- takes(ID, course id, sec id, semester, year, grade)



Why do we use multiple attributes in a Primary Key?

- section(<u>course id</u>, <u>sec id</u>, <u>semester</u>, <u>year</u>, building, …)
- takes(ID, course id, sec id, semester, year, grade)

Using a single field looks
simpler, but it prevents the
benefit of the DB enforcing
uniqueness



— Using sec\_id\_number as foreign key requires us to look up info from multiple tables which may be less efficient

Consider this:

- takes(ID, course id, sec id, semester, year, grade)

Does this match the "business logic" we actually want for our university? (Hint: what uniqueness will this enforce?)



Consider this:

- takes(ID, course id, sec id, semester, year, grade)

This Primary Key allows a student to be registered for multiple sections of the same course at once!

But if we remove *Sec\_id*, then we will not have a complete Foreign Key!

- We must match all fields in the other relation's PK to qualify as a Foreign Key
- In practice, many SQL DBs don't support Referential Integrity without a complete Foreign Key



Relational Model Definitions

#### Constraints and Relationships

#### Lab!

### onwards...