
DB Performance

CSCI 2541 Database Systems & Team Projects

Slides adapted from Prof. Bhagi Narahari, Rahul Simha, and Silberschatz, Korth, Tim Wood, and Sudarshan

GW CSCI 2541W Databases

Phase 1
Next week Monday: Phase 1 is due
﹘ Demo final working code in class
﹘ What if we aren’t done?

Today
﹘ Performance / Indexing
﹘ Security
﹘ Office hours

2

GW CSCI 2541W Databases

Engage!

3

GW CSCI 2541W Databases

Overview of DB and Web Security

Encryption

Storing passwords

Local vs Remote data

SQL Injection Attacks

4

GW CSCI 2541W Databases

Internet Security

5

http://mysecretrecipes.com/

What could go
wrong?

GW CSCI 2541W Databases

HTTP vs HTTPS

6

GW CSCI 2541W Databases

Passwords

7

GW CSCI 2541W Databases

Disk Access Times
Average time to access a target
sector approximated by :

Seek time (Tavg seek)
﹘ Time to position heads over cylinder

containing target sector.
﹘ Typical Tavg seek = 9 ms

Rotational latency (Tavg

rotation)
﹘ Time waiting for first bit of target sector

to pass under r/w head.
﹘ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1

min = 6 ms

Transfer time (Tavg transfer)

﹘ Time to read the bits in the target sector.
﹘ Tavg transfer = 1/RPM x 1/(avg #

sectors/track) x 60 secs/1 min.

8

Taccess = Tavg seek + Tavg rotation + Tavg transfer

= ~200 MB/sec

Disks are slow!
~10ms per random

read

GW CSCI 2541W Databases

Recap: File Organization
Tables mapped as File
﹘ Row is a Record
﹘ Column is field (in record)

Data stored in secondary storage
﹘ Disks – organized as number of disk blocks

Records mapped to disk blocks

Size of file in disk blocks/pages: N
﹘ Number of records/tuples/rows: n
﹘ Size disk block (i.e., page): b bytes
﹘ Size of record (row): r bytes
﹘ Blocking factor p = b/r
﹘ File size N = n/b pages

Efficiency/performance of a file organization
﹘ Time for Search, Insert, Delete

9

GW CSCI 2541W Databases

Example
File of 1,000,000 records

record size 200 bytes

blocks are 4096 bytes
﹘ n = 1,000,000
﹘ r = 200
﹘ b = 4096
﹘ Blocking factor (records per block), p = b/r = __________
﹘ file size = N = n/p = ______________

1
0

fill in the blanks

GW CSCI 2541W Databases

Example
File of 1,000,000 records

record size 200 bytes

blocks are 4096 bytes
﹘ n = 1,000,000
﹘ r = 200
﹘ b = 4096
﹘ Blocking factor, p = b/r = 4096/200 = 20
﹘ file size = N = n/p = 1,000,000/20 = 50,000 blocks

1
1

GW CSCI 2541W Databases

File Organizations
File organization determines how records are
physically placed on disk
﹘ heap file: no particular order
﹘ sorted file
﹘ indexed file
﹘ hash index
﹘ tree indices

Efficiency of file organization typically measured in
terms of number of disk/SSD accesses to fetch data

1
2

GW CSCI 2541W Databases

Heap File
Unorganized “heap” of data

Each block has 200
records

1M records, 50K blocks

SELECT * FROM profs
WHERE ID = 231531

1
3

… (1M records, 50K blocks)

Worst case query time?
Average query time?

GW CSCI 2541W Databases

Heap File
Unorganized “heap” of data

Each block has 200
records

1M records, 50K blocks

INSERT INTO profs
VALUES (…)

1
4

… (1M records, 50K blocks)

Worst case query time?
Average query time?

GW CSCI 2541W Databases

Heap File Performance: Example
Successful lookup: average ½ N= 25,000
﹘ worst case is N= n/p= 50,000 disk accesses
﹘ At 10ms disk access time, this is 500 seconds ~ 8

minutes!

insertion = 2 disk accesses
﹘ unless you need to check uniqueness!

deletion = ½(n/p)+1 = 25,001
﹘ worst case = 50,001

Heap file summary: not great

1
5

GW CSCI 2541W Databases

Attempt 1: better organize the records on disk

Heap file will not cut it!

Need to organize physical records on the file in
some “smart” manner
﹘ Sorted file
﹘ Hash file

16

GW CSCI 2541W Databases

Sorted File
Sort by ID

Each block has 200
records

1M records, 50K blocks

SELECT * FROM profs
WHERE ID = 231531

17

… (1M records, 50K blocks)

Worst case query time?
Average query time?

GW CSCI 2541W Databases

Sorted File
Sort by ID

Each block has 200
records

1M records, 50K blocks

INSERT INTO profs
VALUES (…)

18

… (1M records, 50K blocks)

Worst case query time?
Average query time?

GW CSCI 2541W Databases

Other approaches…
Sorted File… how long ?
﹘ Search time: Log (Number of disk blocks)
﹘ Log (50,000) blocks = 16 IF the blocks are contiguous on

the disk
﹘ Big/unrealistic assumption that records are stored in

consecutive blocks on disk
﹘ Insertion: Could be terrible (N) if we need to rewrite

everything in order (in practice we will avoid this)

19

Even if we don't care about insertion cost, is a sorted
file a perfect solution?

GW CSCI 2541W Databases

Attempt 2: separate lookup from file structure

The structure of the file on disk can't be perfect for
all query types! We need to try something else...

Many queries reference small portion records
﹘ DBMS should be able to locate these without having to

search all records

Create another type of record (pointer?!) which
contains subset of the information in the record
﹘ Analogy: Index in a book or Card Catalog in a library

20

GW CSCI 2541W Databases

Index Basics
An index allows us to more quickly
find a piece of data

Search Key
﹘ Value to be

searched for

Index maps from
a Search Key to a
record in a data block

Index will be a separate
file on disk - need to keep it up to date!

21

GW CSCI 2541W Databases

What Index Data-structure?
As tables, discuss: we want…

● O(log(n)) insert
○ INSERT (y, z) in x

● O(log(n)) lookup
○ SELECT * IN x WHERE pkey = y

● O(log(n)) range queries
○ SELECT * IN x WHERE value > y AND value <= z

You want O(log(n)) both in index, and table data.

O(1) would be great for each!

GW CSCI 2541W Databases

Dense Index
A dense index contains an entry for every data record

Index field specifies what attribute the index lets you
search
﹘ A primary index is an index on a field that is the primary key of

the data file (file might be sorted on the primary key!)
﹘ A secondary index is not on a primary key

23

GW CSCI 2541W Databases

Non-Dense Index?
A dense index contains an entry for every data
record

24

Do we really need an index entry for
every record?? Why not?

GW CSCI 2541W Databases

Non-Dense Index?
A dense index contains an entry for every data
record

25

Do we really need an index entry for
every record?? Why not?

If records are
sorted, we can use
a sparse index to
jump to the right

range, and then do
binary search

GW CSCI 2541W Databases

Indexing other attributes

2
6

Is this a sparse or dense index?

GW CSCI 2541W Databases

Multiple Indexes
We can have multiple indexes to allow us to find different
search keys
﹘ All index files will map to records in the same data file

Secondary index may go to non-unique key! ("Clustering index")

﹘ Each index will map to a bucket with pointers to one or more records

27

Primary
Index on ID

(Sparse)Secondary
Index on Salary

(Dense)

ID Name Dept. Salary

GW CSCI 2541W Databases

Index Evaluation Metrics
Index methods can be evaluated for functionality, efficiency,
and performance.

The functionality of an index can be measured by the
types of queries it supports. Two query types are common:
﹘ exact match on search key
﹘ query on a range of search key values

The performance of an index can be measured by the
time required to execute queries and update the index.
﹘ Access time, update, insert, delete time

The efficiency of an index is measured by the amount of
space required to maintain the index structure.

28

GW CSCI 2541W Databases

Index Performance
Our DB: 1M records, 50K disk blocks

Heap file: 50K disk accesses worst case

Sorted File: Log (50,000) blocks = 16

Indexed Sorted File?
﹘ Suppose 10 byte key + 10 byte record pointer = 20 bytes
﹘ 4KB page -> 200 index records per page

Dense index:
﹘
﹘

Sparse index:
﹘
﹘

29

GW CSCI 2541W Databases

Index Performance
Our DB: 1M records, 50K disk blocks

Heap file: 50K disk accesses worst case

Sorted File: Log (50,000) blocks = 16

Indexed Sorted File?
﹘ Suppose 10 byte key + 10 byte record pointer = 20 bytes
﹘ 4KB page -> 200 index records per page

Dense index:
﹘ 1M records / 200 = 5,000 index pages
﹘ Log(5000) = 12 + 1 = 13 disk accesses

Sparse index: 1 index record per disk block
﹘ 50K / 200 = 250 index pages
﹘ Log(250) = 8 + 1 = 9 disk accesses

30

GW CSCI 2541W Databases

Large Index

31

What do we do if index gets too large?

GW CSCI 2541W Databases

Multi-layer Indexes
We can create an index for our index!

Each index layer
speeds up search
but consumes
more space

32

Sparse index: 1 index record per disk block
﹘ 50K / 200 = 250 index pages
﹘ Log(250) = 8 + 1 = 9 disk accesses

2 Layer Index ???

GW CSCI 2541W Databases

Multi-layer Indexes
We can create an index for our index!

Each index layer
speeds up search
but consumes
more space

33

Sparse index: 1 index record per disk block
﹘ 50K / 200 = 250 index pages
﹘ Log(250) = 8 + 1 = 9 disk accesses

2 Layer Index:
﹘ 50K / 200 = 250 index pages in layer 1
﹘ 250/200 = 2 pages in layer 2
﹘ Log(2) + 1 + 1 = 4 disk accesses

GW CSCI 2541W Databases

Alternatives
Indexes and sorted files work pretty well, but don't
handle updates well
﹘ Performance degrades as files get larger
﹘ May need to reorganize data file and index file

B+-Trees are data structures customized for
database storage and indexing
﹘ Allow efficient searching, including range queries
﹘ Automatically reorganizes itself with small, local,

changes, in the face of insertions and deletions.
﹘ Reorganization of entire file is never required to maintain

performance.

34

GW CSCI 2541W Databases

B+-Tree
Efficient, dense, multi-level index

35

Takes the concepts we
covered today and builds
them into a data structure

GW CSCI 2541W Databases

Indexes in practice
DBMS will allow you to create an index on the fields
you expect will have the most searches

Now all WHERE Persons.LastName = "..." queries
will be faster!
﹘ But all updates to Persons will be (slightly) slower

Your project DBs will all fit in memory, so no
significant benefit from using indexes...

36

CREATE INDEX idx_lastname

ON Persons (LastName);

GW CSCI 2541W Databases

Summary
Yet one more amazing thing that the DBMS can do
for you!

Way better than needing to write your own code to
optimize a query or worry about how to layout data
on disk yourself!

37

