
12. Transactions and
Beyond RDBMS

CSCI 2541W Database Systems & Team Projects

Gabe

Includes slides from Prof. Bhagi Narahari and from Wood

Class support
We have ~12 hours of office hours every week

If you need help, come to us!

Find the balance:
﹘ Problem solve, learn things on your own, practice

debugging
﹘ but get help when you aren't making progress or aren't

sure what to try!

The TAs/UTAs/LAs are an amazing resource for you
﹘ Maybe you should consider being one next year?!

2

GW CSCI 2541W Databases

Virtual Environments (venv)
Create a new virtual environment

Load the environment

3

macOS/Linux
You may need to run sudo apt-get install python3-venv first
python3 -m venv .venv

Windows
You can also use py -3 -m venv .venv
python -m venv .venv

macOS/Linux
source .venv/bin/activate
Windows
.venv\Scripts\activate.bat

GW CSCI 2541W Databases

Flask Auto-Reload
Do you save file, kill flask server, start flask server
after every change? Try this!

4

FLASK_ENV=development python3 main.py
 * Serving Flask app "app" (lazy loading)
 * Environment: development
 * Debug mode: on
 * Running on http://0.0.0.0:8080/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 259-217-934
127.0.0.1 - - [19/Mar/2021 15:36:24] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [19/Mar/2021 15:36:24] "GET /favicon.ico HTTP/1.1" 404 -
 * Detected change in '/Users/timwood/flask-data/main.py', reloading
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 259-217-934
127.0.0.1 - - [19/Mar/2021 15:36:35] "GET / HTTP/1.1" 200 -
^C

GW CSCI 2541W Databases

VS Code Tips
Get familiar with this editor! It’s pretty great!

Do you know how to?
1. Jump to the definition of a function?
2. Find all the references to a variable?
3. Rename a variable in all places?
4. Select the next occurrence of a highlighted word?
5. Quickly switch between files?
6. Autocomplete code snippets?
7. Share your environment with teammate?
8. Comment out the current line?
9. View two files side-by-side?

10. View the changes you’ve made to a file since last commit?
5

GW CSCI 2541W Databases

Python Debugger
Bold but true? Using a debugger is the single best
way to quickly become a better developer and save
yourself lots of time

Easy to use:
﹘ Click left of line numbers to set a break point
﹘ Press F5 to start debugger (or use menus)
﹘ Step through code with buttons
﹘ Use Debug Console to view/edit variables
﹘ Sad: difficult to debug how data gets rendered in

templates

6

Why Relational Databases are
great… and awful

7

GW CSCI 2541W Databases

Relational Databases
Relational databases are the dominant form of database
and apply to many data management problems.
﹘ Over $30 billion annual market in 2017.

Relational databases are not the only way.

Other models:
﹘ Hierarchical model
﹘ Object-oriented
﹘ JSON/YAML
﹘ Graphs
﹘ Key-value stores
﹘ Document models

8

GW CSCI 2541W Databases

Relational Database Model
Well developed data model – gained widespread
acceptance…eventually!
﹘ Started gaining acceptance in 80’s…took off in 90’s

Many benefits:
﹘ Data-program independence
﹘ Persistence of data – data ‘stays’ on storage
﹘ Manage concurrency in transactions – transaction

processing
﹘ SQL programming became a standard
﹘ Growth of online businesses / e-commerce meant greater

demand for recording and reporting data

9

GW CSCI 2541W Databases

What is transaction processing?
A user’s program may carry out many operations on the
data retrieved from the database; but the DBMS is only
concerned about what data is read/written from/to the
database

A transaction is the DBMS’s abstract view of the user
program: sequence of Read/Write to DB
﹘ Ex: Withdraw from bank account: update balance in SQL

Concurrent execution of user programs essential for
good performance.
﹘ Keep CPU humming when disk IO takes place.

10

GW CSCI 2541W Databases

What is transaction processing?
A user’s program may carry out many operations on the
data retrieved from the database; but the DBMS is only
concerned about what data is read/written from/to the
database

A transaction is the DBMS’s abstract view of the user
program: sequence of Read/Write to DB
﹘ Ex: Withdraw from bank account: update balance in SQL

Concurrent execution of user programs essential for
good performance.
﹘ Keep CPU humming when disk IO takes place.

11

Purchase Queries (cost = 20):

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

GW CSCI 2541W Databases

What is transaction processing?
A user’s program may carry out many operations on the
data retrieved from the database; but the DBMS is only
concerned about what data is read/written from/to the
database

A transaction is the DBMS’s abstract view of the user
program: sequence of Read/Write to DB
﹘ Ex: Withdraw from bank account: update balance in SQL

Concurrent execution of user programs essential for
good performance.
﹘ Keep CPU humming when disk IO takes place.

12

Purchase Queries (cost = 20):

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

balance = 100

GW CSCI 2541W Databases

What is transaction processing?
A user’s program may carry out many operations on the
data retrieved from the database; but the DBMS is only
concerned about what data is read/written from/to the
database

A transaction is the DBMS’s abstract view of the user
program: sequence of Read/Write to DB
﹘ Ex: Withdraw from bank account: update balance in SQL

Concurrent execution of user programs essential for
good performance.
﹘ Keep CPU humming when disk IO takes place.

13

Purchase Queries (cost = 20):

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

balance = 100

balance = 80

GW CSCI 2541W Databases

What is transaction processing?
A user’s program may carry out many operations on the
data retrieved from the database; but the DBMS is only
concerned about what data is read/written from/to the
database

A transaction is the DBMS’s abstract view of the user
program: sequence of Read/Write to DB
﹘ Ex: Withdraw from bank account: update balance in SQL

Concurrent execution of user programs essential for
good performance.
﹘ Keep CPU humming when disk IO takes place.

14

Purchase Queries:

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

Purchase Queries:

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

GW CSCI 2541W Databases

What is transaction processing?
A user’s program may carry out many operations on the
data retrieved from the database; but the DBMS is only
concerned about what data is read/written from/to the
database

A transaction is the DBMS’s abstract view of the user
program: sequence of Read/Write to DB
﹘ Ex: Withdraw from bank account: update balance in SQL

Concurrent execution of user programs essential for
good performance.
﹘ Keep CPU humming when disk IO takes place.

15

Purchase Queries:

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

Purchase Queries:

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

balance = 100 balance = 100

GW CSCI 2541W Databases

What is transaction processing?
A user’s program may carry out many operations on the
data retrieved from the database; but the DBMS is only
concerned about what data is read/written from/to the
database

A transaction is the DBMS’s abstract view of the user
program: sequence of Read/Write to DB
﹘ Ex: Withdraw from bank account: update balance in SQL

Concurrent execution of user programs essential for
good performance.
﹘ Keep CPU humming when disk IO takes place.

16

Purchase Queries:

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

Purchase Queries:

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

balance = 80

GW CSCI 2541W Databases

What is transaction processing?
A user’s program may carry out many operations on the
data retrieved from the database; but the DBMS is only
concerned about what data is read/written from/to the
database

A transaction is the DBMS’s abstract view of the user
program: sequence of Read/Write to DB
﹘ Ex: Withdraw from bank account: update balance in SQL

Concurrent execution of user programs essential for
good performance.
﹘ Keep CPU humming when disk IO takes place.

17

Purchase Queries:

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

Purchase Queries:

SELECT balance FROM bank_accnt
AS ba WHERE ba.uid = 10

python code gets pybalance
cost = 20
if pybalance > cost:
 pybalance -= cost

UPDATE bank_account AS ba SET
ba.balance = pybalance WHERE
ba.uid = 10

balance = 80

Free Stuff is great!

Until you lose your
job cause you’re
giving customers

free stuff ;-(

GW CSCI 2541W Databases

Concurrency ….
Users submit Transactions; assume each executes by
itself
﹘ Concurrency achieved by DBMS which interleaves actions

(read/write of DB objects) of different Transactions
﹘ Each Transaction must leave the DB in a consistent state (if

DB is consistent when Transaction begins)

How to interleave operations from different Transactions
(programs) which may share the same data?
﹘ Ex: Two (or more) students registering for same course

What happens if system crashes – how to recover to a
consistent state?

18

Big idea: ACID Properties in RDBMs

A__________

C__________

I__________

D__________

19

What properties are
important for Transactions?

GW CSCI 2541W Databases

Big idea: ACID Properties in RDBMs

Atomicity: all actions in Transaction happen or none happen

Consistency: if each Transaction is consistent (maintains
data integrity rules), and DB starts in consistent state then it
ends consistent

Isolation: Execution of one Transaction isolated from others
(they act like they execute one after the other)

Durability: if a Transaction commits (completes), its effects
persist

Meeting the ACID Test:
﹘ Concurrency controller guarantees consistency and isolation
﹘ Logging & recovery for atomicity and durability

20

GW CSCI 2541W Databases

Concurrency Control..How? Locks!

Conflict occurs when two Transactions try to access
the same data item

Associate a “lock” for each shared data item
﹘ Similar to mutual exclusion (MUTEX)
﹘ To access a data item, check if it is unlocked else wait
﹘ Need to worry about the type of operation: Read or Write
﹘ Leads to Lock Modes: Shared Lock(S) for Reads only and

Exclusive Lock(X) for Writes
﹘ Providing both consistency and performance is hard!

You’ll learn more in OS

21

GW CSCI 2541W Databases

Recoverability: Logging
Record the operations of
each transaction into a log
﹘ Only consider a

transaction complete if a
“commit” operation is
appended to the log

﹘ After a commit, we can
update the actual data file

If system crashes, read
from log file to rollback to
a consistent state

22

image from
https://sqlbak.com/academy/transaction-log

GW CSCI 2541 Databases: Wood & Chaufournier

So why do we need something
other than Relational DBs?

Database application trends?

Data trends?

23

Any guesses for how data or
applications have been changing in last

10 years?

GW CSCI 2541W Databases

How to store a Customer…?
In 1990

In 2000

In 2005

In 2020

For each change:
﹘ ALTER TABLE Customer… add columns
﹘ Take DB offline, change schema, repopulate DB, fix any

inconsistencies…
24

GW CSCI 2541W Databases

Instead of adding Columns…

25

How could we add new information such
as mobile phone to our DB without

adding columns to an existing table?

GW CSCI 2541W Databases

Instead of adding Columns…
Could create separate tables and use Joins to
combine them
﹘ Customer JOIN Phone JOIN MobilePhone JOIN Gender

JOIN Email JOIN Twitter JOIN Instagram JOIN …

But doing lots of joins is expensive and messy
﹘ Lots of fields may be NULL, need to be careful about

consistency

If our data is constantly evolving or every record has
a variable structure, RDBMS may not be the right
choice!

26

RDBMS Pros and Cons

27

Strengths of Relational DBs?

Weaknesses of Relational DBs?

RDBMS Pros and Cons

28

Strengths

ACID properties
(Atomic, Consistent,
Isolated, Durable)

Widespread/standard
ized

Weaknesses

Strong consistency
properties are
expensive to enforce

Strict structure is
difficult to adapt

Some expensive
features are not
needed by some apps

Trend 1
Data is getting
bigger:

“Every 2 days we
create as much
information as we
did up to 2003”
– Eric Schmidt,
Google in 2010

29

Facebook generates
 4 Petabytes per day! (2020)

Trend 2: Connectedness

30

In
fo

rm
at

io
n

co
nn

ec
tiv

ity

Text
Documents

Hypertext

Feeds

Blogs

Wikis

UGC

Tagging
Folksonomies

RDFa

Onotologies

???

Data is more connected

Trend 3: Data is often Semi-Structured (or no structure)

If you tried to collect all the data of every movie ever
made, how would you model it?

Actors, Characters, Locations, Dates, Costs,
Ratings, Showings, Ticket Sales, etc.

31

GW CSCI 2541W Databases

Relational Databases Challenges
Features of relational databases make them
"challenging" for certain problems:

1. Fixed schemas – defined ahead of time, changes are
difficult, and lots of real-world data is “messy”. Relational
design requires lots of Joins. So get rid of schemas

2. Complicated queries – SQL is declarative and powerful but
may be overkill. Instead, do the work in application
code

3. Transaction overhead – Not all data and query answers
need to be perfect. Close enough is sometimes good
enough

4. Scalability – Relational databases may not scale sufficiently
to handle high data and query loads or this scalability
comes with a very high cost. Find new ways to scale 32

GW CSCI 2541W Databases

Database Scaling
RDBMS are “scaled up” by adding hardware
processing power
﹘ Need more performance? upgrade your machine!

33

Why is it difficult to replicate or partition an RDBMS to
improve performance by using multiple computers?

Let's consider the Python Dictionary

Access any Value from the dictionary using its Key
﹘ Dictionary = Key/Value Store = Hash Table

Suppose we have to add lots and lots more fields...

34

myDict = {
"name": "Maya",
"address": "156 East 24th street",
"city": "New York",
"state":"New York",
"cars": ["Ford","Honda"]

}

How could we scale this "database"?

GW CSCI 2541W Databases

Scaling a Dictionary (KV Store)
A Dictionary (or Key-Value store) can be:

Scaled UP by getting a more powerful server
﹘ Just like RDBMS

Scaled OUT by adding another server and
partitioning the data
﹘ KV store doesn't need to support queries across objects!
﹘ Consistency is not a problem, easy to exploit parallelism

from many servers

35

GW CSCI 2541W Databases

Dictionaries can be Nested
A "value" can be a
complex data structure
of its own!

Each Employee can
have several fields within
its own dictionary

We can partition the KV
store so each server
holds a set of
Employees

Be careful - key must be unique!

36

employees = {}
employees["Brenda"] = {

"name": "Brenda Kali",
"address": "156 East 24th St",
"city": "New York",
"state":"New York",
"cars": ["Ford","Honda"]

}
employees["Jose"] = {

"name": "Jose Constantino",
"address": "231 West 181st St",
"city": "New York",
"state":"New York",
"cars": ["Tesla"]

}
...

GW CSCI 2541W Databases

Employee Database
Two possible structures

37

ID name address ...

Brenda Brenda Kali 156 E. 24th St ...

Jose Jose Constantino 231 W. 181st
St ...

...

employees = {}
employees["Brenda"] = {

"name": "Brenda Kali",
"address": "156 East 24th St",
"city": "New York",
"state":"New York",
"cars": ["Ford","Honda"]

}
employees["Jose"] = {

"name": "Jose Constantino",
"address": "231 West 181st St",
"city": "New York",
"state":"New York",
"cars": ["Tesla"]

}
...

ID car

Brenda Ford

Brenda Honda

Jose Tesla

RDBMS / SQL KV Store / Not SQL

Which is better?!

GW CSCI 2541W Databases

It depends!
Do you need to filter employees by where they live?
﹘ Use RDBMS! KV store just knows about the key!

What if each employee has unique set of fields that
must be stored?
﹘ Use KV store since internals of an employee are entirely

customizable

What if scale of data is really really big?
﹘ Use KV store IF you don't need to worry about

cross-record consistency or queries

38

GW CSCI 2541W Databases

Does this look familiar to anyone?

(Reformatted slightly)

39

{'Brenda': {
'name': 'Brenda Kali',
'address': '156 East 24th St',
'city': 'New York',
'state': 'New York',
'cars': ['Ford', 'Honda']},
'Jose': {
'name': 'Jose Constantino',
'address': '231 West 181st St',
'city': 'New York',
'state': 'New York',
'cars': ['Tesla']}

}

GW CSCI 2541W Databases

JSON, XML, etc
'Schema-less' data structure definitions
﹘ Data format, not a full DBMS!

JavaScript Object Notation (JSON, pronounced "Jason")
﹘ Serializes (saves) data objects into text form
﹘ Human-readable
﹘ Semi-structured
﹘ Pervasively used in many languages (beyond JS)

Used to transmit most data to/between web services
over AJAX/REST interfaces
﹘ Client-side javascript makes a request to server, server

responds with JSON data, client updates local browser view

40

GW CSCI 2541W Databases

JSON Example
JSON constructs:
﹘ Values: number, strings (double quoted), true, false, null
﹘ Objects: enclosed in { } and consist of set of key-value

pairs (dictionary)
﹘ Arrays: enclosed in [] and are lists of values
﹘ Objects and arrays can be nested

Example:

41

GW CSCI 2541W Databases

JSON Parsers
JSON parser converts JSON file (or string) into program
objects (checks syntax)
﹘ In javascript, can call eval() method on variable containing a JSON

string

Many languages have APIs to allow for creation and
manipulation of JSON objects

Common use:
﹘ JSON data provided from a server (NoSQL or relational) and sent to

web client
﹘ Web client uses javascript to convert JSON into objects and

manipulate as required

Converters for csv to json
42

GW CSCI 2541W Databases

What is NoSQL?
Stands for No-SQL or Not Only SQL??

What is definition….No definition!! But common some
characteristics:

Class of non-relational data storage systems

Schema-less: usually do not require a fixed schema nor do
they use the concept of joins

Cluster friendliness – ability to run on large number of servers
(distributed system / cluster)

All NoSQL offerings relax one or more of the ACID properties

43

GW CSCI 2541W Databases

NoSQL - advantages
NoSQL databases are useful for several problems not well-suited
for relational databases:
﹘ Variable data: semi-structured, evolving, or has no schema
﹘ Massive data: terabytes or petabytes of data from new applications (web

analysis, sensors, social graphs)
﹘ Parallelism: large data requires architectures to handle massive parallelism,

scalability, and reliability
﹘ Simpler queries: may not need full SQL expressiveness
﹘ Relaxed consistency: more tolerant of errors, delays, or inconsistent results

("eventual consistency")
﹘ Easier/cheaper: less initial cost to get started

NoSQL is not really about SQL but instead developing data
management systems that are not relational.

44

GW CSCI 2541W Databases

CAP Theorem..getting around ACID

The CAP Theorem (proposed by Eric Brewer) states that there
are three properties of a data system:
﹘ Consistency
﹘ Availability
﹘ Partitions

but you can have at most two of the three properties at a
time
﹘ Since scaling out requires partitioning, many NoSQL systems

sacrifice consistency for availability/partitioning.

Eventual Consistency - weaker than ACID
﹘ Kind of what it sounds like
﹘ Does not guarantee updates are immediately visible
﹘ But eventually all nodes will agree on a final value

45

GW CSCI 2541W Databases

NoSQL (Data) Models
There are a variety of models/systems that are not
relational:
﹘ Column Stores – represent data in columns rather than rows.
﹘ Examples: Google BigTable, HBase, Cassandra

﹘ Key-value stores – ideal for retrieving specific data records
from a large set of data

﹘ Document stores – similar to key-value stores except value is
a document in some form (e.g. JSON)

﹘ Graph databases – represent data as graphs

Related:
﹘ MapReduce – technique for large scale data analysis provided

by many NoSQL DBMSs

46

GW CSCI 2541W Databases

Typical NoSQL API
Basic API access:
﹘ get(key) -- Extract the value given a key
﹘ put(key, value) -- Create or update the value given its key
﹘ delete(key) -- Remove the key and its associated value
﹘ execute(key, operation, parameters) -- Invoke an

operation to the value (given its key) which is a special
data structure (e.g. List, Set, Map etc).

47

What is missing compared to SQL?

GW CSCI 2541W Databases

What do you lose with NoSQL systems?

Joins, group by; order by
﹘ Implement this logic in the application layer (eg Python)

ACID transactions

SQL

Enterprise integration with other relational and
SQL-based systems

JDBC/ODBC APIs

familiarity and standards compliance
48

GW CSCI 2541W Databases

1. Key-Value Data Model
Key-value stores store and retrieve data using keys. The data
values are arbitrary. Designed for "web sized" data sets.

Operations:
﹘ insert(key, value), fetch(key), update(key), delete(key)

Basically just a remote Dictionary / Hash Table / Hashmap

Benefits: high-scalability, availability, and performance

Limitations: single record transactions, eventual consistency,
simple query interface

Examples: Cassandra, Amazon Dynamo, Google BigTable,
HBase, Redis, memcached

49

GW CSCI 2541W Databases

2. Document Store Data model
Document stores are similar to key-value stores but the
value stored as a structured document (e.g. JSON, XML).

Can store and query documents by key as well as retrieve
and filter documents by their properties
﹘ Not as powerful as SQL

Benefits: high-scalability, availability, and performance

Limitations: same as key-value stores, may cause
redundancy and more code to manipulate documents

Examples: CouchDB, SimpleDB, MongoDB, Document
DB

50

GW CSCI 2541W Databases

3. Graph Databases
Model the data as a graph

Why graph databases? We’ll use an example you’ve
come across….

Examples: Neo4J, Flock, ArangoDB.

Question: You want to find the cheapest flight,
regardless of number of stops, from Montreal to
Seattle

51

GW CSCI 2541W Databases

Flight Data stored as Relational Table

52

Flight_ID Start_Airport End_Airport Cost

1231 Montreal Seattle 700

1234 Montreal Chicago 200

1235 Montreal Boston 100

2123 Boston Seattle 400

2124 Boston Chicago 50

3123 Chicago Seattle 200

3124 Chicago Boulder 50

4123 Boulder Seattle 100

….

Query for direct flight Query for 1-stop flight
SELECT Cost SELECT (A.Cost + B.Cost)
FROM Flights FROM Flights A,B
WHERE Start_Airport=‘Montreal’ WHERE A.Start_Airport=‘Montreal’
And End_Airport=‘Seattle’; AND A.End_Airport=B.Start_Airport

 B.End_Airport= ‘Seattle’;

GW CSCI 2541W Databases

An Alternate Data Model

How do you find the cheapest flight plan from
Montreal to Seattle ?
﹘ Do you know of any algorithms to do this ?

53

Montrea
l

BostonChicago

Boulder

Seattle

700

100

200

200

50

200

50

100

GW CSCI 2541W Databases

What is a Graph Database?
A database with an explicit graph structure

Each node knows its adjacent nodes
﹘ As the number of nodes increases, the cost of a local

step (or hop) remains the same

Captures the richness in connectedness of data
﹘ Social network analytics – much easier when modeled as

a graph
﹘ Many problems can be represented as graphs (supply

chains, transportation, software function call chains, ...)

54

GW CSCI 2541W Databases

Graph Examples
Average number of "hops" between two random
Twitter users?

Is Prof. Wood related to....?

55

Graph Examples
Average number of "hops" between two random
Twitter users? 3.43

Is Prof. Wood related to....?

56

GW CSCI 2541W Databases

Should I be using NoSQL Databases?

NoSQL Data storage systems makes sense for
applications that need to deal with very very large
semi-structured data
﹘ Social Networking Feeds, Data analytics

For most organizational (ecommerce) databases,
which are not that large and have low update/query
rates, regular relational databases are usually the
right solution
﹘ Standards, reliable, ACID

57

GW CSCI 2541W Databases

Databases for Analytics
Transactional RDMSes:

● Transactions
● Joins
● Retrieving multiple tuple fields
● OLTP – online transaction processing

Transactions for digesting data – analytics!

● Range queries, aggregation
● Operations on a small number of attributes
● OLAP – online analytics processing

GW CSCI 2541W Databases

Most operations, single attribute?

SELECT AVG(price) FROM purchases
WHERE price > 100 * 60

price product_name … … … … … … … … purchase
_location

200

… … … … … … … … … … …

20

struct purchases_tuple {
 int64_t cents;
 char product_name[1024];
 …
}
struct purchases {
 // this would be dynamic alloc
 struct purchases_tuple rows[N];
}

struct purchases relation;

int64_t tot = 0, cnt = 0, p;

for (int i = 0; i < N; i++) {
 p = relation.rows[i].cents;

 // What code goes here?

}
return tot / cnt;

GW CSCI 2541W Databases

Most operations, single attribute?

SELECT AVG(price) FROM purchases
WHERE price > 100 * 60

price product_name … … … … … … … … purchase
_location

200

… … … … … … … … … … …

20

struct purchases_tuple {
 int64_t cents;
 char product_name[1024];
 …
}
struct purchases {
 // this would be dynamic alloc
 struct purchases_tuple rows[N];
}

struct purchases relation;

int64_t tot = 0, cnt = 0, p;

for (int i = 0; i < N; i++) {
 p = relation.rows[i].cents;

 if (p > 100 * 60) {
 tot += p;
 cnt++;
 }
}
return tot / cnt;

GW CSCI 2541W Databases

Most operations, single attribute?

SELECT AVG(price) FROM purchases
WHERE price > 100 * 60

price product_name … … … … … … … … purchase
_location

200

… … … … … … … … … … …

20

struct purchases_tuple {
 int64_t cents;
 char product_name[1024];
 …
}
struct purchases {
 // this would be dynamic alloc
 struct purchases_tuple rows[N];
}

struct purchases relation;

int64_t tot = 0, cnt = 0, p;

for (int i = 0; i < N; i++) {
 p = relation.rows[i].cents;

 if (p > 100 * 60) {
 tot += p;
 cnt++;
 }
}
return tot / cnt;

Inefficiencies in this code?

GW CSCI 2541W Databases

Most operations, single attribute?

SELECT AVG(price) FROM purchases
WHERE price > 100 * 60

price product_name … … … … … … … … purchase
_location

200

… … … … … … … … … … …

20

struct purchases_tuple {
 int64_t cents;
 char product_name[1024];
 …
}
struct purchases {
 // this would be dynamic alloc
 struct purchases_tuple rows[N];
}

struct purchases relation;

int64_t tot = 0, cnt = 0, p;

for (int i = 0; i < N; i++) {
 p = relation.rows[i].cents;

 if (p > 100 * 60) {
 tot += p;
 cnt++;
 }
}
return tot / cnt;

What if
sizeof(struct purchase_tuple) == BLOCK_SIZE

… but cents is small (8)!

This accesses memory like this – each memory access is a new block!

relation

GW CSCI 2541W Databases

Most operations, single attribute?

SELECT AVG(price) FROM purchases
WHERE price > 100 * 60

price product_name … … … … … … … … purchase
_location

200

… … … … … … … … … … …

20

struct purchases_tuple {
 int64_t cents;
 char product_name[1024];
 …
}
struct purchases {
 // this would be dynamic alloc
 struct purchases_tuple rows[N];
}

struct purchases relation;

int64_t tot = 0, cnt = 0, p;

for (int i = 0; i < N; i++) {
 p = relation.rows[i].cents;

 if (p > 100 * 60) {
 tot += p;
 cnt++;
 }
}
return tot / cnt;

What if
sizeof(struct purchase_tuple) == BLOCK_SIZE

… but cents is small (8)!

This accesses memory like this – each memory access is a new block!

relation

We don’t want every access
to be on a new block!

Can we make this faster?

GW CSCI 2541W Databases

Most operations, single attribute?

SELECT AVG(price) FROM purchases
WHERE price > 100 * 60

struct purchases_cents {
 int64_t cents[N];
}
struct purchases {
 struct purchases_cents cents;
 struct product_name prodname;
 …
}

struct purchases relation;

int64_t tot = 0, cnt = 0, p;

for (int i = 0; i < N; i++) {
 p = relation.cents.cents[i];

 if (p > 100 * 60) {
 tot += p;
 cnt++;
 }
}
return tot / cnt;

price

200

…

20

product_name

…

purchase_location

…… … …
…

GW CSCI 2541W Databases

Most operations, single attribute?

SELECT AVG(price) FROM purchases
WHERE price > 100 * 60

struct purchases_cents {
 int64_t cents[N];
}
struct purchases {
 struct purchases_cents cents;
 struct product_name prodname;
 …
}

struct purchases relation;

int64_t tot = 0, cnt = 0, p;

for (int i = 0; i < N; i++) {
 p = relation.cents.cents[i];

 if (p > 100 * 60) {
 tot += p;
 cnt++;
 }
}
return tot / cnt;

price

200

…

20

product_name

…

purchase_location

…… … …
…

GW CSCI 2541W Databases

Most operations, single attribute?

SELECT AVG(price) FROM purchases
WHERE price > 100 * 60

struct purchases_cents {
 int64_t cents[N];
}
struct purchases {
 struct purchases_cents cents;
 struct product_name prodname;
 …
}

struct purchases relation;

int64_t tot = 0, cnt = 0, p;

for (int i = 0; i < N; i++) {
 p = relation.cents.cents[i];

 if (p > 100 * 60) {
 tot += p;
 cnt++;
 }
}
return tot / cnt;

price

200

…

20

product_name

…

purchase_location

…… … …
…

GW CSCI 2541W Databases

Most operations, single attribute?

SELECT AVG(price) FROM purchases
WHERE price > 100 * 60

struct purchases_cents {
 int64_t cents[N];
}
struct purchases {
 struct purchases_cents cents;
 struct product_name prodname;
 …
}

struct purchases relation;

int64_t tot = 0, cnt = 0, p;

for (int i = 0; i < N; i++) {
 p = relation.cents.cents[i];

 if (p > 100 * 60) {
 tot += p;
 cnt++;
 }
}
return tot / cnt;

price

200

…

20

product_name

…

purchase_location

…… … …
…

Previous memory access pattern:

relation

versus using this column store layout

Might fit all accesses in a single block!

GW CSCI 2541W Databases

OLAP: Column Stores for Analytics

Column stores:

● When queries focus on a small number of
columns…
○ store the data in columns!

● Better layout of relation
○ across blocks
○ across cache-lines

● Recall: DBMS storage engine optimizes for the
hardware!
○ Abstraction is powerful!

GW CSCI 2541W Databases

Vector DB
Let's imagine a program that tracks all webpages, takes a user query in natural
language, and gives a list of webpages “closest” in content to the query!

● Similarity search

webpage 0

webpage 1

webpage 2

webpage N

…

query

GW CSCI 2541W Databases

Vector DB
Let's imagine a program that tracks all webpages, takes a user query in natural
language, and gives a list of webpages “closest” in content to the query!

● Similarity search

webpage 0

webpage 1

webpage 2

webpage N

…

query

word2vec

GW CSCI 2541W Databases

Vector DB
Let's imagine a program that tracks all webpages, takes a user query in natural
language, and gives a list of webpages “closest” in content to the query!

● Similarity search

webpage 0

webpage 1

webpage 2

webpage N

…

query

word2vec

word2vec

● Take text as input
● “Embed” it into a vector-space
● N-dimensional space – often very high – 300!
● “Close” concepts have close vectors

● VectorDB: input vector, find closest vectors (i.e.
documents!)

GW CSCI 2541W Databases

Vector DB
Let's imagine a program that tracks all webpages, takes a user query in natural
language, and gives a list of webpages “closest” in content to the query!

● Similarity search

webpage 0

webpage 1

webpage 2

webpage N

…

query

word2vec

GW CSCI 2541W Databases

Vector DB
Let's imagine a program that tracks all webpages, takes a user query in natural
language, and gives a list of webpages “closest” in content to the query!

● Similarity search

webpage 0

webpage 1

webpage 2

webpage N

…

query

word2vec

GW CSCI 2541W Databases

Vector DB
Let's imagine a program that tracks all webpages, takes a user query in natural
language, and gives a list of webpages “closest” in content to the query!

● Similarity search

webpage 0

webpage 1

webpage 2

webpage N

…

query

word2vec

GW CSCI 2541W Databases

Vector DB
Let's imagine a program that tracks all webpages, takes a user query in natural
language, and gives a list of webpages “closest” in content to the query!

● Similarity search

webpage 0

webpage 1

webpage 2

webpage N

…

query

word2vec

ranked closest?

GW CSCI 2541W Databases

Vector DB

GW CSCI 2541W Databases

Vector DB

GW CSCI 2541W Databases

Vector DB

GW CSCI 2541W Databases

Vector DB
// euclidean distance
float
distance(float *v0, float *v1) {
 float sum = 0;
 for (int i = 0; i < DIM; i++) {
 sum += pow(v0[i] - v1[i], 2);
 }
 return sqrt(sum);
}

int
closest(float **vs, float *q) {
 float min = FLT_MAX;
 int min_off = 0;
 for (int i = 0; vs[i]; i++) {
 float d = distance(vs[i], q);
 if (min > d) {
 min = d;
 min_off = i;
 }
 }
 return min_off;
}

GW CSCI 2541W Databases

Vector DB
// euclidean distance
float
distance(float *v0, float *v1) {
 float sum = 0;
 for (int i = 0; i < DIM; i++) {
 sum += pow(v0[i] - v1[i], 2);
 }
 return sqrt(sum);
}

int
closest(float **vs, float *q) {
 float min = FLT_MAX;
 int min_off = 0;
 for (int i = 0; vs[i]; i++) {
 float d = distance(vs[i], q);
 if (min > d) {
 min = d;
 min_off = i;
 }
 }
 return min_off;
}

Efficiency?

GW CSCI 2541W Databases

Vector DB
// euclidean distance
float
distance(float *v0, float *v1) {
 float sum = 0;
 for (int i = 0; i < DIM; i++) {
 sum += pow(v0[i] - v1[i], 2);
 }
 return sqrt(sum);
}

int
closest(float **vs, float *q) {
 float min = FLT_MAX;
 int min_off = 0;
 for (int i = 0; vs[i]; i++) {
 float d = distance(vs[i], q);
 if (min > d) {
 min = d;
 min_off = i;
 }
 }
 return min_off;
}

Vector DBs:
● Efficient similar search
● Hierarchical – compare

distance to a small set of
vectors, then to a set close
to the closest, then …

GW CSCI 2541W Databases

Which DB to use?
● Transactional, relational DB?
● No-SQL?
● Graph?
● Analytics DB?
● Vector DB?

Good news: Postgres supports all of the options!

● You need to know what you want,
● and why you want it.

GW CSCI 2541W Databases

DB Engines Ranking: DBMS systems by popularity

83

https://db-engines.com/en/ranking_trend

GW CSCI 2541W Databases

stopped here in Monday lecture

8
4

Trend 1
Data is getting
bigger:

“Every 2 days we
create as much
information as we
did up to 2003”
– Eric Schmidt,
Google in 2010

8
5

Facebook generates
 4 Petabytes per day! (2020)

Trend 2: Connectedness

8
6

In
fo

rm
at

io
n

co
nn

ec
tiv

ity

Text
Documents

Hypertext

Feeds

Blogs

Wikis

UGC

Tagging
Folksonomies

RDFa

Onotologies

???

Data is more connected

Trend 3: Data is often Semi-Structured (or no structure)

If you tried to collect all the data of every movie ever
made, how would you model it?

Actors, Characters, Locations, Dates, Costs,
Ratings, Showings, Ticket Sales, etc.

8
7

GW CSCI 2541W Databases

Relational Databases Challenges
Some features of relational databases make them
"challenging" for certain problems:
﹘ 1) Fixed schemas – defined ahead of time, changes are

difficult, and lots of real-world data is “messy”. Relational
design requires lots of Joins. So get rid of schemas

﹘ 2) Complicated queries – SQL is declarative and powerful but
may be overkill. Instead, do the work in application code

﹘ 3) Transaction overhead – Not all data and query answers
need to be perfect. Close enough is sometimes good
enough

﹘ 4) Scalability – Relational databases may not scale sufficiently
to handle high data and query loads or this scalability comes
with a very high cost. Find new ways to scale

8
8

