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Today & Upcoming…
Today

● DB Internals
● Midterm – column names
● @ your mentor in your discord channel if you want 

feedback
Wednesday:

● Using AWS RDS with your project
● Mentor meeting!!!

○ Everyone should understand the whole project (code reviews) – we 
will ask everyone questions, and ask everyone to do tasks

○ Come prepared to demo efficiently (max 5 min) what you have; 
grading on three dimensions:
i. Progress
ii. Plan
iii. Teamwork

○ Be prepared for questions. Answer directly, and don’t feel bad if we 
cut you off.
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Library Usage
For your project you may use…
﹘ Anything in the standard python library
﹘ Form helper libraries like Flask-WTF
﹘ Login libraries like Flask-login
﹘ CSS/HTML libraries like Bootstrap
﹘ Javascript libraries like jquery

You may not use…
﹘ Libraries which fully abstract away database operations 

(e.g., object relational mapping / ORM libraries)
﹘ A framework other than Flask

If you aren’t sure, ask me!
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Meet your mentor
Advising
﹘ Kevin (1-4) and Lucas (5-7)

Applications
﹘ Jeet (8-10) and Cat (11-14)

Registration
﹘ Billy (15-18) and Ethan (19-22)

Today’s meeting:
﹘ How will you organize your repository and use Git?
﹘ How will you plan your project using Agile?
﹘ When not meeting: start planning tasks!
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DBMS Internals
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DBMS
A database management system provides efficient, 
convenient, and safe multi-user storage and access to 
massive amounts of persistent data.
﹘ Efficient - Able to handle large data sets and complex 

queries without searching all files and data items.
﹘ Convenient - Easy to write queries to retrieve data.
﹘ Safe - Protects data from system failures and hackers.
﹘ Massive - Database sizes in gigabytes/terabytes/petabytes.
﹘ Persistent - Data exists after program execution completes.
﹘ Multi-user - More than one user can access and update 

data at the same time while preserving consistency…. 
concept of transactions
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Components of a DBMS
A DBMS is a complicated software system containing 
many components:
﹘ Query processor - translates user/application queries into 

low-level data manipulations
﹘ Sub-components: query parser, query optimizer

﹘ Storage manager - maintains storage information 
including memory allocation, buffer management, and file 
storage

﹘ Sub-components: buffer manager, file manager

﹘ Transaction manager - performs scheduling of 
operations and implements concurrency control algorithms

﹘ You will learn more about storage management and concurrency 
in the Operating Systems course… enjoy!
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DBMS Architecture: Complete Picture
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Storage and Organization:  Overview

A database system relies on the operating system to 
store data on storage devices.

Database performance depends on:
﹘ Properties of storage devices
﹘ How devices are used and accessed via the operating 

system

Quick look into techniques for storing and 
representing data
﹘ These apply for SQL as well as NoSQL systems
﹘ Key in efficient storage and retrieval systems
﹘ Including search engines and big data analytics
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Review (?) from architecture:  Memory Definitions
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What is (Temporary) Memory?

What is Permanent/Persistent/Non-volatile Memory?

What is Cache Memory?
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Review (?) from architecture:  Memory Definitions

Temporary memory retains data only while the power 
is on.
﹘ Also referred to as volatile storage.
﹘ e.g. dynamic random-access memory (DRAM) (main memory)

Permanent memory stores data even after the power 
is off.
﹘ Also referred to as non-volatile storage or secondary storage
﹘ e.g. flash memory, SSD, hard drive, DVD, tape drives

Cache is faster memory used to store a subset of a 
larger, slower memory for performance.
﹘ processor cache (Level 1 & 2), disk cache, network cache
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Physical Storage: Memory Hierarchy

Primary Storage: cache & main memory
﹘ Can be directly accessed by CPU
﹘ Currently used data

Secondary Storage: flash, SSD, magnetic disks, optical disks, 
tapes 
﹘ Larger capacity, low cost, slow access
﹘ Cannot be directly processed by CPU

DB stores large amount, persist over time
﹘ Data is stored in secondary storage
﹘ Contrast with run-time data structures

Time taken to fetch data depends on how data is 
organized on disk/file
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DBMS storage

13

Why not store everything in Main Memory (DRAM)?
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DBMS storage

Costs too much. 

Main memory is volatile.  
﹘ We want data to be saved between runs.  (Obviously!)
﹘ Situations that cause permanent loss of data occur less 

frequently in disks than primary memory
﹘ Disk/Flash storage is non-volatile
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Why not store everything in Main Memory (DRAM)?
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Magnetic Hard Disks
Secondary storage device of choice for BIG data. 

Main advantage over tapes:  random access vs. 
sequential.

Data is stored and retrieved in units called disk 
blocks or pages.

Unlike RAM, time to retrieve a disk page varies 
depending upon location on disk.  
﹘ Therefore, relative placement of pages on disk has major impact on 

DBMS performance!
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Disk Geometry
Disks consist of platters, each with two surfaces.

Each surface consists of concentric rings called tracks.

Each track consists of sectors/blocks separated by gaps.
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Components of a Disk 
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The platters spin (say, 90rps).
The arm assembly is moved 
in or out to position  a head 
on a desired track. Tracks 
under heads  make    a 
cylinder

Only one head 
reads/writes at any 
one time.

Block size is a multiple             
of sector size (which is fixed).

Platters

Spindle

Disk head

Sector

What kind of data 
accesses will be fastest?
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Components of a Disk 
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Accessing a Disk Page
Time to access (read/write) 
a disk block:
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Accessing a Disk Page
Time to access (read/write) 
a disk block:
﹘ seek time (moving arms to 

position disk head on track)
﹘ rotational delay (waiting for 

block to rotate under head)
﹘ transfer time (actually moving 

data to/from disk surface)
Seek time and rotational 
delay dominate.

Key to lower I/O cost: 
reduce seek/rotation 
delays! 
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Disk Access Times
Average time to  access a target 
sector approximated by :

Seek time (Tavg seek)
﹘ Time to position heads over cylinder 

containing target sector.
﹘ Typical  Tavg seek = 9 ms

Rotational latency (Tavg 

rotation)
﹘ Time waiting for first bit of target sector 

to pass under r/w head.
﹘ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 

min = 6 ms

Transfer time (Tavg transfer)

﹘ Time to read the bits in the target sector.
﹘ Tavg transfer = 1/RPM x 1/(avg # 

sectors/track) x 60 secs/1 min.
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Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 

= ~200 MB/sec
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Accessing Data
SELECT * FROM EMP;

Need to scan entire file
﹘ Read all records

Access all blocks/pages of the file on the disk
﹘ Assume N pages

How long does this take ?

Simple approach: N* Taccess 
﹘ Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 
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How long does this take ?

Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 
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Accessing Data
SELECT * FROM EMP;

Need to scan entire file
﹘ Read all records

Access all blocks/pages of the file on the disk
﹘ Assume N pages

How long does this take ?

Simple approach: N* Taccess 
﹘ Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 
﹘ May need to seek and rotate for every block!
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How could we make this 
more efficient?
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Impact of Disk Layout
If we can keep the data from a DB in a contiguous 
region on disk we can eliminate seeks and rotation!
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First Block: = Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 

Second Block = Tavg transfer 

Third block = Tavg transfer 

…
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But…
Unfortunately we don’t usually have very much 
control over exactly where data is located on disk
﹘ When you call write you don’t need to specify what 

platter and track! That would be a pain

Often DBMS just reserve large files to store tables in
﹘ Assume that the OS File System will lay out those files in 

contiguous regions
﹘ For really high performance environments, can co-design 

file system and DBMS!
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Solid State Drives: SSDs
Solid State Drives (SSDs) use different technology to 
store data - flash memory instead of spinning disks
﹘ Data stored in grid of blocks
﹘ Can access blocks directly (no moving parts)
﹘ Similar interface to HDDs: block-level access
﹘ Higher cost and lower capacity
﹘ HDD: 8TB for $150
﹘ SDD: 1TB for $250

26

How will this affect DBMS 
performance?
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Representing Data in Databases
A database is made up of one or more files.
﹘ Each file contains one or more blocks.
﹘ Each block has a header and contains one or more 

records.
﹘ Each record contains one or more fields.
﹘ Each field is a representation of a data item in a record.

27
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File = Relation; Record = row/tuple; Field = column/attribute
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Organization of Records
Record is collection of related information
﹘ Each tuple/row is a record
﹘ each value is one or more bytes, corresponds to a 

particular field of record
﹘ each field specifies some attribute
﹘ collection of field definitions and their types constitutes 

record type or format
﹘ data type associated with each field

﹘ blocks are fixed size, but record sizes vary

Two main types of records:
﹘ Variable length: size of record varies – e.g. w/ VARCHAR
﹘ Fixed length: all records have fixed length – CHAR
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Fixed Length Records

30

How should we 
store a fixed 

length record?

Customer ID First Name Surname Birthday Age Fav Color

123 Pooja Singh 1/4/1984 37 Blue

456 San Zhang 3/15/2001 19 Blue

789 John Zhang 11/12/2006 14 Buff
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Fixed Length Records
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Customer ID First Name Surname Birthday Age Fav Color

123 Pooja Singh 1/4/1984 37 Blue

456 San Zhang 3/15/2001 19 Blue

789 John Zhang 11/12/2006 14 Buff

Need a fixed size for each field/attribute

Store the offset from start of record to each field
﹘ Will be the same for all records in a table
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Variable Length Records
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How should we 
store a variable  
length record?

Customer ID First Name Surname Birthday Age Fav Quote

123 Pooja Singh 1/4/1984 37 Carpe Diem

456 San Zhang 3/15/2001 19 To be or not 
to be

789 John Zhang 11/12/2006 14 We hold…
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Variable Length Records

33

1) Use a delimiter 
between each field

2) Store an offset to 
each field within a 
record

Customer ID First Name Surname Birthday Age Fav Quote

123 Pooja Singh 1/4/1984 37 Carpe Diem

456 San Zhang 3/15/2001 19 To be or not 
to be

789 John Zhang 11/12/2006 14 We hold…
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Record Types
Fixed length vs Variable length records
﹘ fixed is easier to implement
﹘ fixed wastes space when block size not multiple of 

record size

Spanned vs Unspanned
﹘ when parts of a record can be placed onto a block, need 

pointers to next block where remainder of record is 
placed
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Record Layout
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Customer ID First Name Surname Birthday Age Fav Quote

123 Pooja Singh 1/4/1984 37 Carpe Diem

456 San Zhang 3/15/2001 19 To be or not 
to be

789 John Zhang 11/12/2006 14 We hold…

… … … … … …

How should we 
store records in a 

file?
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Record Layout

Heap File: dump all records together in a heap, keep adding 
new records to the end of the file
﹘ Fast insertion! 
﹘ Slow lookups! 

Sorted File: carefully store all records in sorted order
﹘ Slow insertion!
﹘ Fast lookups!
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Customer ID First Name Surname Birthday Age Fav Quote

123 Pooja Singh 1/4/1984 37 Carpe Diem

456 San Zhang 3/15/2001 19 To be or not 
to be

789 John Zhang 11/12/2006 14 We hold…

… … … … … …

How should we 
store records in a 

file?
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DBMS Operations
Queries will require operations on disk
﹘ Insert a record
﹘ Delete a record
﹘ Modify a record
﹘ Scan all records
﹘ Search for records that satisfy a condition
﹘ Range Search
﹘ Equality Search

﹘ Reorganize to clean up deleted records
﹘ Garbage collection
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Heap Files
Record are unordered

Insertion?

Deletion?

Search?
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Sorted Files
Sort records based on a particular field (primary 
key?)

Insertion?

Deletion?

Search?
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Hashed Files
Distribute records among 
buckets based on a hash 
key
﹘ Use hash key to find a 

bucket of similar records
﹘ Keep adding blocks as you 

get more records in that 
bucket

What kind of search can 
this help with?
﹘ Range search?
﹘ Equality search?
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Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

Implementation?

Output 
records=
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Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

for r1 in records(R1):
    for r2 in records(R2):
        if r1.a = r2.a:
            add(OUT, r1.x)Output 

records=
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Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

for r1 in records(R1):
    for r2 in records(R2):
        if r1.a = r2.a:
            add(OUT, r1.x)Output 

records=Complexity?
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Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

sort(R1) # sort on a
sort(R2)
# walk from top of each
# sorted record, downwards
# comparing like records

# similar to the “merge
# phase” in merge-sortOutput 

records=
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Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

sort(R1) # sort on a
sort(R2)
r1 = pop(R1)
r2 = pop(R2)
while r1 != nil and r2 != nil:
    if r1.a = r2.a:
        add(OUT, r1.x)
        r1 = pop(R1)
        r2 = pop(R2)
    elif r1.a < r2.a:
        r1 = pop(R1)
    else: # r1.a > r2.a
        r2 = pop(R2)

Asymptotic complexity?   

Output 
records=
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Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

sort(R1) # sort on a
sort(R2)
r1 = pop(R1)
r2 = pop(R2)
while r1 != nil and r2 != nil:
    if r1.a = r2.a:
        add(OUT, r1.x)
        r1 = pop(R1)
        r2 = pop(R2)
    elif r1.a < r2.a:
        r1 = pop(R1)
    else: # r1.a > r2.a
        r2 = pop(R2)

Asymptotic complexity?
O(NlogN)

Output 
records=
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Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

Other option: Hash Joins
- Hash all records in one 

relation
- Iterate through the 

other relation
- Look for matches in the 

hashed relation using 
the hashtable

O(N), but “constant costs” 
of hashing on each 
record, and space 
requirements for the HT

Output 
records=


