
9. DBMS Internals
CSCI 2541 Database Systems & Team Projects

Gabe

Working from material by Wood & Chaufournier



GW CSCI 2541W Databases

Today & Upcoming…
Today

● DB Internals
● Midterm – column names
● @ your mentor in your discord channel if you want 

feedback
Wednesday:

● Using AWS RDS with your project
● Mentor meeting!!!

○ Everyone should understand the whole project (code reviews) – we 
will ask everyone questions, and ask everyone to do tasks

○ Come prepared to demo efficiently (max 5 min) what you have; 
grading on three dimensions:
i. Progress
ii. Plan
iii. Teamwork

○ Be prepared for questions. Answer directly, and don’t feel bad if we 
cut you off.

2



GW CSCI 2541W Databases

Library Usage
For your project you may use…
﹘ Anything in the standard python library
﹘ Form helper libraries like Flask-WTF
﹘ Login libraries like Flask-login
﹘ CSS/HTML libraries like Bootstrap
﹘ Javascript libraries like jquery

You may not use…
﹘ Libraries which fully abstract away database operations 

(e.g., object relational mapping / ORM libraries)
﹘ A framework other than Flask

If you aren’t sure, ask me!
3



GW CSCI 2541W Databases

Meet your mentor
Advising
﹘ Kevin (1-4) and Lucas (5-7)

Applications
﹘ Jeet (8-10) and Cat (11-14)

Registration
﹘ Billy (15-18) and Ethan (19-22)

Today’s meeting:
﹘ How will you organize your repository and use Git?
﹘ How will you plan your project using Agile?
﹘ When not meeting: start planning tasks!

4



DBMS Internals

5



GW CSCI 2541W Databases

DBMS
A database management system provides efficient, 
convenient, and safe multi-user storage and access to 
massive amounts of persistent data.
﹘ Efficient - Able to handle large data sets and complex 

queries without searching all files and data items.
﹘ Convenient - Easy to write queries to retrieve data.
﹘ Safe - Protects data from system failures and hackers.
﹘ Massive - Database sizes in gigabytes/terabytes/petabytes.
﹘ Persistent - Data exists after program execution completes.
﹘ Multi-user - More than one user can access and update 

data at the same time while preserving consistency…. 
concept of transactions

6



GW CSCI 2541W Databases

Components of a DBMS
A DBMS is a complicated software system containing 
many components:
﹘ Query processor - translates user/application queries into 

low-level data manipulations
﹘ Sub-components: query parser, query optimizer

﹘ Storage manager - maintains storage information 
including memory allocation, buffer management, and file 
storage

﹘ Sub-components: buffer manager, file manager

﹘ Transaction manager - performs scheduling of 
operations and implements concurrency control algorithms

﹘ You will learn more about storage management and concurrency 
in the Operating Systems course… enjoy!

7



DBMS Architecture: Complete Picture

8

Transactions that 
provide 

multi-user 
consistency

Queries to flexibly 
read, update, and 
delete information

Structure that is 
independent of 

the underlying file 
formats

Database
Administrators

DBMS

Users

Web-Apps & 
Programs

Direct (SQL)
Users

Query
Processor

Storage
Manager

OS

Parser +
Compiler

Database API

DB
Files

Query
Planner Optimizer Execution

Engine

Buffer
Manager

File
Manager

Transaction
Manager

Recovery
System

Result
Formatting



GW CSCI 2541W Databases

Storage and Organization:  Overview

A database system relies on the operating system to 
store data on storage devices.

Database performance depends on:
﹘ Properties of storage devices
﹘ How devices are used and accessed via the operating 

system

Quick look into techniques for storing and 
representing data
﹘ These apply for SQL as well as NoSQL systems
﹘ Key in efficient storage and retrieval systems
﹘ Including search engines and big data analytics

9



GW CSCI 2541W Databases

Review (?) from architecture:  Memory Definitions

10

What is (Temporary) Memory?

What is Permanent/Persistent/Non-volatile Memory?

What is Cache Memory?



GW CSCI 2541W Databases

Review (?) from architecture:  Memory Definitions

Temporary memory retains data only while the power 
is on.
﹘ Also referred to as volatile storage.
﹘ e.g. dynamic random-access memory (DRAM) (main memory)

Permanent memory stores data even after the power 
is off.
﹘ Also referred to as non-volatile storage or secondary storage
﹘ e.g. flash memory, SSD, hard drive, DVD, tape drives

Cache is faster memory used to store a subset of a 
larger, slower memory for performance.
﹘ processor cache (Level 1 & 2), disk cache, network cache

11



GW CSCI 2541W Databases

Physical Storage: Memory Hierarchy

Primary Storage: cache & main memory
﹘ Can be directly accessed by CPU
﹘ Currently used data

Secondary Storage: flash, SSD, magnetic disks, optical disks, 
tapes 
﹘ Larger capacity, low cost, slow access
﹘ Cannot be directly processed by CPU

DB stores large amount, persist over time
﹘ Data is stored in secondary storage
﹘ Contrast with run-time data structures

Time taken to fetch data depends on how data is 
organized on disk/file

12



GW CSCI 2541W Databases

DBMS storage

13

Why not store everything in Main Memory (DRAM)?



GW CSCI 2541W Databases

DBMS storage

Costs too much. 

Main memory is volatile.  
﹘ We want data to be saved between runs.  (Obviously!)
﹘ Situations that cause permanent loss of data occur less 

frequently in disks than primary memory
﹘ Disk/Flash storage is non-volatile

14

Why not store everything in Main Memory (DRAM)?



GW CSCI 2541W Databases

Magnetic Hard Disks
Secondary storage device of choice for BIG data. 

Main advantage over tapes:  random access vs. 
sequential.

Data is stored and retrieved in units called disk 
blocks or pages.

Unlike RAM, time to retrieve a disk page varies 
depending upon location on disk.  
﹘ Therefore, relative placement of pages on disk has major impact on 

DBMS performance!

15



GW CSCI 2541W Databases

Disk Geometry
Disks consist of platters, each with two surfaces.

Each surface consists of concentric rings called tracks.

Each track consists of sectors/blocks separated by gaps.

16

spindle

surface
tracks

track k

sectors

gaps



GW CSCI 2541W Databases

Components of a Disk 

17

The platters spin (say, 90rps).
The arm assembly is moved 
in or out to position  a head 
on a desired track. Tracks 
under heads  make    a 
cylinder

Only one head 
reads/writes at any 
one time.

Block size is a multiple             
of sector size (which is fixed).

Platters

Spindle

Disk head

Sector

What kind of data 
accesses will be fastest?



GW CSCI 2541W Databases

Components of a Disk 

18

The platters spin (say, 90rps).
The arm assembly is moved 
in or out to position  a head 
on a desired track. Tracks 
under heads  make    a 
cylinder

Only one head 
reads/writes at any 
one time.

Block size is a multiple             
of sector size (which is fixed).

Platters

Spindle

Disk head

Sector

What kind of data 
accesses will be fastest?



GW CSCI 2541W Databases

Accessing a Disk Page
Time to access (read/write) 
a disk block:

19

What physically must 
happen to read?

Platters

Spindle

Disk head

Sector



GW CSCI 2541W Databases

Accessing a Disk Page
Time to access (read/write) 
a disk block:
﹘ seek time (moving arms to 

position disk head on track)
﹘ rotational delay (waiting for 

block to rotate under head)
﹘ transfer time (actually moving 

data to/from disk surface)
Seek time and rotational 
delay dominate.

Key to lower I/O cost: 
reduce seek/rotation 
delays! 

20

Platters

Spindle

Disk head

Sector



GW CSCI 2541W Databases

Disk Access Times
Average time to  access a target 
sector approximated by :

Seek time (Tavg seek)
﹘ Time to position heads over cylinder 

containing target sector.
﹘ Typical  Tavg seek = 9 ms

Rotational latency (Tavg 

rotation)
﹘ Time waiting for first bit of target sector 

to pass under r/w head.
﹘ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 

min = 6 ms

Transfer time (Tavg transfer)

﹘ Time to read the bits in the target sector.
﹘ Tavg transfer = 1/RPM x 1/(avg # 

sectors/track) x 60 secs/1 min.

21

Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 

= ~200 MB/sec



GW CSCI 2541W Databases

Accessing Data
SELECT * FROM EMP;

Need to scan entire file
﹘ Read all records

Access all blocks/pages of the file on the disk
﹘ Assume N pages

How long does this take ?

Simple approach: N* Taccess 
﹘ Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 

22

How long does this take ?

Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 



GW CSCI 2541W Databases

Accessing Data
SELECT * FROM EMP;

Need to scan entire file
﹘ Read all records

Access all blocks/pages of the file on the disk
﹘ Assume N pages

How long does this take ?

Simple approach: N* Taccess 
﹘ Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 
﹘ May need to seek and rotate for every block!

23

How could we make this 
more efficient?



GW CSCI 2541W Databases

Impact of Disk Layout
If we can keep the data from a DB in a contiguous 
region on disk we can eliminate seeks and rotation!

24

First Block: = Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 

Second Block = Tavg transfer 

Third block = Tavg transfer 

…



GW CSCI 2541W Databases

But…
Unfortunately we don’t usually have very much 
control over exactly where data is located on disk
﹘ When you call write you don’t need to specify what 

platter and track! That would be a pain

Often DBMS just reserve large files to store tables in
﹘ Assume that the OS File System will lay out those files in 

contiguous regions
﹘ For really high performance environments, can co-design 

file system and DBMS!

25



GW CSCI 2541W Databases

Solid State Drives: SSDs
Solid State Drives (SSDs) use different technology to 
store data - flash memory instead of spinning disks
﹘ Data stored in grid of blocks
﹘ Can access blocks directly (no moving parts)
﹘ Similar interface to HDDs: block-level access
﹘ Higher cost and lower capacity
﹘ HDD: 8TB for $150
﹘ SDD: 1TB for $250

26

How will this affect DBMS 
performance?



GW CSCI 2541W Databases

Representing Data in Databases
A database is made up of one or more files.
﹘ Each file contains one or more blocks.
﹘ Each block has a header and contains one or more 

records.
﹘ Each record contains one or more fields.
﹘ Each field is a representation of a data item in a record.

27



28

File = Relation; Record = row/tuple; Field = column/attribute



GW CSCI 2541W Databases

Organization of Records
Record is collection of related information
﹘ Each tuple/row is a record
﹘ each value is one or more bytes, corresponds to a 

particular field of record
﹘ each field specifies some attribute
﹘ collection of field definitions and their types constitutes 

record type or format
﹘ data type associated with each field

﹘ blocks are fixed size, but record sizes vary

Two main types of records:
﹘ Variable length: size of record varies – e.g. w/ VARCHAR
﹘ Fixed length: all records have fixed length – CHAR

29



GW CSCI 2541W Databases

Fixed Length Records

30

How should we 
store a fixed 

length record?

Customer ID First Name Surname Birthday Age Fav Color

123 Pooja Singh 1/4/1984 37 Blue

456 San Zhang 3/15/2001 19 Blue

789 John Zhang 11/12/2006 14 Buff



GW CSCI 2541W Databases

Fixed Length Records

31

Customer ID First Name Surname Birthday Age Fav Color

123 Pooja Singh 1/4/1984 37 Blue

456 San Zhang 3/15/2001 19 Blue

789 John Zhang 11/12/2006 14 Buff

Need a fixed size for each field/attribute

Store the offset from start of record to each field
﹘ Will be the same for all records in a table



GW CSCI 2541W Databases

Variable Length Records

32

How should we 
store a variable  
length record?

Customer ID First Name Surname Birthday Age Fav Quote

123 Pooja Singh 1/4/1984 37 Carpe Diem

456 San Zhang 3/15/2001 19 To be or not 
to be

789 John Zhang 11/12/2006 14 We hold…



GW CSCI 2541W Databases

Variable Length Records

33

1) Use a delimiter 
between each field

2) Store an offset to 
each field within a 
record

Customer ID First Name Surname Birthday Age Fav Quote

123 Pooja Singh 1/4/1984 37 Carpe Diem

456 San Zhang 3/15/2001 19 To be or not 
to be

789 John Zhang 11/12/2006 14 We hold…



GW CSCI 2541W Databases

Record Types
Fixed length vs Variable length records
﹘ fixed is easier to implement
﹘ fixed wastes space when block size not multiple of 

record size

Spanned vs Unspanned
﹘ when parts of a record can be placed onto a block, need 

pointers to next block where remainder of record is 
placed

34



GW CSCI 2541W Databases

Record Layout

35

Customer ID First Name Surname Birthday Age Fav Quote

123 Pooja Singh 1/4/1984 37 Carpe Diem

456 San Zhang 3/15/2001 19 To be or not 
to be

789 John Zhang 11/12/2006 14 We hold…

… … … … … …

How should we 
store records in a 

file?



GW CSCI 2541W Databases

Record Layout

Heap File: dump all records together in a heap, keep adding 
new records to the end of the file
﹘ Fast insertion! 
﹘ Slow lookups! 

Sorted File: carefully store all records in sorted order
﹘ Slow insertion!
﹘ Fast lookups!

36

Customer ID First Name Surname Birthday Age Fav Quote

123 Pooja Singh 1/4/1984 37 Carpe Diem

456 San Zhang 3/15/2001 19 To be or not 
to be

789 John Zhang 11/12/2006 14 We hold…

… … … … … …

How should we 
store records in a 

file?



GW CSCI 2541W Databases

DBMS Operations
Queries will require operations on disk
﹘ Insert a record
﹘ Delete a record
﹘ Modify a record
﹘ Scan all records
﹘ Search for records that satisfy a condition
﹘ Range Search
﹘ Equality Search

﹘ Reorganize to clean up deleted records
﹘ Garbage collection

37



GW CSCI 2541W Databases

Heap Files
Record are unordered

Insertion?

Deletion?

Search?

38



GW CSCI 2541W Databases

Sorted Files
Sort records based on a particular field (primary 
key?)

Insertion?

Deletion?

Search?

39



GW CSCI 2541W Databases

Hashed Files
Distribute records among 
buckets based on a hash 
key
﹘ Use hash key to find a 

bucket of similar records
﹘ Keep adding blocks as you 

get more records in that 
bucket

What kind of search can 
this help with?
﹘ Range search?
﹘ Equality search?

40



GW CSCI 2541W Databases

Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

Implementation?

Output 
records=



GW CSCI 2541W Databases

Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

for r1 in records(R1):
    for r2 in records(R2):
        if r1.a = r2.a:
            add(OUT, r1.x)Output 

records=



GW CSCI 2541W Databases

Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

for r1 in records(R1):
    for r2 in records(R2):
        if r1.a = r2.a:
            add(OUT, r1.x)Output 

records=Complexity?



GW CSCI 2541W Databases

Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

sort(R1) # sort on a
sort(R2)
# walk from top of each
# sorted record, downwards
# comparing like records

# similar to the “merge
# phase” in merge-sortOutput 

records=



GW CSCI 2541W Databases

Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

sort(R1) # sort on a
sort(R2)
r1 = pop(R1)
r2 = pop(R2)
while r1 != nil and r2 != nil:
    if r1.a = r2.a:
        add(OUT, r1.x)
        r1 = pop(R1)
        r2 = pop(R2)
    elif r1.a < r2.a:
        r1 = pop(R1)
    else: # r1.a > r2.a
        r2 = pop(R2)

Asymptotic complexity?   

Output 
records=



GW CSCI 2541W Databases

Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

sort(R1) # sort on a
sort(R2)
r1 = pop(R1)
r2 = pop(R2)
while r1 != nil and r2 != nil:
    if r1.a = r2.a:
        add(OUT, r1.x)
        r1 = pop(R1)
        r2 = pop(R2)
    elif r1.a < r2.a:
        r1 = pop(R1)
    else: # r1.a > r2.a
        r2 = pop(R2)

Asymptotic complexity?
O(NlogN)

Output 
records=



GW CSCI 2541W Databases

Join Implementation
SELECT x from R1 JOIN R2 ON R1.a = R2.a

R1 records R2 records

Other option: Hash Joins
- Hash all records in one 

relation
- Iterate through the 

other relation
- Look for matches in the 

hashed relation using 
the hashtable

O(N), but “constant costs” 
of hashing on each 
record, and space 
requirements for the HT

Output 
records=


