
Lab 5: Flask + SQL
GW CS 2541: Database Systems and Team Projects - 2024
Prof. Gabe Parmer, Kate Halushka, Sameen Ahmad, and Dania Abdalla

1

Connecting Python with your Database

import sqlite3

connection = sqlite3.connect(‘/path/to/database.db’)

cur = connection.cursor()

cur.execute(“{{SQL STATEMENT}}”)

connection.commit()

connection.close()

Load the SQLite
library

Open a connection to
your database file

Create a Cursor
object that allows you

to execute queries!

Commit your changes and
close the connection

2

Fetching Data

3

import sqlite3

connection = sqlite3.connect(‘student.db’)

connection.row_factory = sqlite3.Row

cursor = connection.cursor()

cursor.execute(“SELECT * FROM students”)

data = cursor.fetchone()

print(data.keys())

[‘name’, ‘id’, ‘email’]

print(data[‘name’])

‘Kate Halushka’

connection.commit()

connection.close()

Fetching results returns row(s) as a list of tuples
- cursor.fetchall() → fetches all rows of a query

result
- cursor.fetchmany(n) → fetches n rows of a

query result
- cursor.fetchone() → fetches a single row

What if we want to fetch data into a dictionary?
- Assigning our connection with the

row_factory() helper class makes our cursor
return ‘dictionary’ rows instead of tuples!

- Column names can be treated as a dictionary

Fetching Lots of Data

4

import sqlite3

connection = sqlite3.connect(‘student.db’)

connection.row_factory = sqlite3.Row

cursor = connection.cursor()

cursor.execute(“SELECT * FROM students”)

rows = cursor.fetchall()

Let’s print all the rows that were returned

for row in rows:

print(f”{row[‘name’]}, {row[‘id’]}, {row[‘email’]}”)

connection.commit()

connection.close()

How would we display our
student info on the front
end instead of printing to

the console?

Inserting Data into the DB

5

import sqlite3

connection = sqlite3.connect(‘student.db’)

cursor = connection.cursor()

Insert new student into the students table

Sameen_name = “Sameen Ahmad”

Sameen_id = “G00000000”

cursor.execute(“INSERT INTO students (name, id) VALUES (?,?)”, (sameen_name, sameen_id))

connection.commit()

connection.close()

Why do you think we use
(?) placeholders for input

data when we interact with
our db?

Whenever we want to make
changes to the DB, we must

commit our changes

If only providing one value,
put a "," to ensure Python
treats this as a tuple, eg

(ethan_name,)

Updating Data in the DB

6

import sqlite3

connection = sqlite3.connect(‘student.db’)

cursor = connection.cursor()

Update a student’s email

new_email = “new.email@yahoo.com”

sameen_id = “G00000000”

cursor.execute(“UPDATE students SET email = ? WHERE id = ?”, (new_email, sameen_id))

connection.commit()

connection.close()

Python + SQL Exercise

● Let’s try out some queries with a simple student database…

7

Rebuilding the DB
Table details are in create.sql

To rebuild database in VSCode:

Right click in the file, and select

`Run Query`

Then, select your database

(This can be changed by selecting the `Use Database option`
after a right click)

Alternatively, you can choose to use the command palette at
the top of the screen (or using ctrl-shift-p) to run commands

To rebuild database outside VSCode:
Run `sqlite3 myDatabase.db ".read create.sql"`

8

Activity 1

Retrieve a list of student information from the
sqlite database and print to a route (‘/’) using
a for loop in a flask template

You can structure the template however you
like, just make sure it prints ALL the
information from the database.

If you need to verify, you can
always run a query in Python!

What information will you need
to pass to the template?

9

How can I take in User Input?

● Data is exchanged from client
side to server side using post
requests

● Data can be accessed by
variables sent from a form

10

from flask import Flask, render_template, request

app = Flask(‘app’)

@app.route(‘/’, methods=[‘GET’, ‘POST’])

def print_name():

if request.method == ‘POST’:

print (request.form[“field_name”])

return render_template(‘simple_form.html’)

app.run(host=’0.0.0.0’, port=8080)

<body>

 <form action="/" method="POST">

 <input type="text" name="field_name" >

 <input type="submit" name="submit">

 </form>

</body>

Forms

11

from flask import Flask, render_template, request

app = Flask(‘app’)

@app.route(‘/’, methods=[‘GET’, ‘POST’])

def print_name():

if request.method == ‘POST’:

name = request.form[“field_name”])

print(name)

return render_template(‘simple_form.html’)

app.run(host=’0.0.0.0’, port=8080)

<html>

<head>

<title> My Form </title>

</head>

<body>

 <form action="/" method="POST">

 <input type="text" name="field_name" >

 <input type="submit" name="submit">

 </form>

</body>

</html>

Use the form attribute to
post input data to our

Flask server

Specify which route to post
data to using “action”

Activity 2

1. Extend Activity 1 to create a new route (‘/addstudent’) that displays a simple
form for “registering” a new student for the class.
a. This form should take in a name, email, and ID for a new student and insert to the database

1. Once you submit the form, you should be able to verify that it worked by
going back to the default (‘/’) route to see the new student being displayed

12

