Lab 5: Flask + SQL

GW CS 2541: Database Systems and Team Projects - 2024
Prof. Gabe Parmer, Kate Halushka, Sameen Ahmad, and Dania Abdalla




Connecting Python with your Database

Load the SQLite
library

Create a Cursor
object that allows you
to execute queries!

import sqglite3

Open a connection to
your database file

connection = sqglite3.connect(‘'/path/to/database.db’)

cur = connection.cursor ()

cur.execute (“{{SQL STATEMENT}}”)

connection.commit () Commit your changes and

connection.close()

close the connection




Fetching Data

import sqlite3

connection = sqglite3.connect(‘student.db’)
connection.row_factory = sqlite3.Row

cursor = connection.cursor()

cursor.execute ("SELECT * FROM students”)
data = cursor.fetchone ()
print (data.keys())

# [‘name’, ‘id’, ‘email’]
print(data[ ‘name’])

# ‘Kate Halushka’

connection.commit ()

connection.close()

Fetching results returns row(s) as a list of tuples
- cursor.fetchall( ) — fetches all rows of a query
result
- cursor.fetchmany(n) — fetches n rows of a
query result
- cursor.fetchone( ) — fetches a single row

What if we want to fetch data into a dictionary?
Assigning our connection with the

row_factory() helper class makes our cursor
return ‘dictionary’ rows instead of tuples!
- Column names can be treated as a dictionary



Fetching Lots of Data

import sqglite3

connection = sqglite3.connect(‘student.db’)
connection.row_ factory = sqlite3.Row

cursor = connection.cursor ()

cursor.execute (“"SELECT * FROM students”)

rows = cursor.fetchall()

# Let’s print all the rows that were returned
for row in rows:

print (£”{row[ ‘name’]}, {row[‘'id’]}, {row[‘email’]}”)

connection.commit ()

connection.close ()




Inserting Data into the DB

import sqlite3
connection = sqglite3.connect(‘student.db’)
cursor = connection.cursor ()
# Insert new student into the students table
Sameen name = “Sameen Ahmad”

Sameen_id = “G00000000”

Why do you think we use
(?) placeholders for input
data when we interact with
our db?

cursor.execute (VINSERT INTO students (name, id) |[VALUES (?,?)”,

(sameen name, sameen_id)

. . Whenever we want to make
connection.commit ()

changes to the DB, we must
commit our changes

connection.close()

If only providing one value,

put a "," to ensure Python
treats this as a tuple, eg
(ethan name,)




Updating Data in the DB

import sqlite3

connection = sqlite3.connect(‘'student.db’)

cursor = connection.cursor ()

# Update a student’s email
new_email = “new.email@yahoo.com”

“*G00000000”

sameen_id

cursor.execute ("UPDATE students SET email = ? WHERE id = ?7”,

connection.commit ()

connection.close()

(new_email, sameen_ id) )




Python + SQL Exercise

e Let's try out some queries with a simple student database...



Rebuilding the DB

£ createsql X

Table details are in create.sql

foreign_keys=off;

Change All Occurrences Ctrl+F2
. . . students;
To rebuild database in VSCode: R
i varchar(32) >
varchar(50) - Share >
. . . varchar(50)
Right click in the file, and select
Copy Ctrl+C
students > Paste Ctri+V
N N students )5
Run Query S Run Query Ctrl+Shift+Q

students

Run Selected Query

Use Database

Then, select your database

Command Palette... Ctrl+Shift+P

(This can be changed by selecting the ‘Use Database option®

after a rlght CIICk) myDatabase.db c\Users\kyle\OneDrive\Desktop\Sem2\TA\TEMPLATE-5-lab5-flask-and-sql\myDatabase...

‘memory:

Choose database from file

Alternatively, you can choose to use the command palette at
the top of the screen (or using ctrl-shift-p) to run commands

To rebuild database outside VSCode:
Run "sqlite3 myDatabase.db ".read create.sql"’




Activity 1

Retrieve a list of student information from the
sqlite database and print to a route ('/’) using
a for loop in a flask template

You can structure the template however you
like, just make sure it prints ALL the

information from the database. ,
If you need to verify, you can

always run a query in Python!




How can | take in User Input?

e Datais exchanged from client
side to server side using post
requests

e Data can be accessed by
variables sent from a form

from flask import Flask, render template, request
app = Flask(‘app’)
@app.route(‘'/’, methods=[‘GET’, ‘POST’])
def print name():
if request.method == ‘POST':
print (request.form[“field name”])
return render template(‘simple form.html’)

app.run(host="0.0.0.0’, port=8080)

<body>
<form action="/" method="POST">
<input type="text" name="field name" ><br>
<input type="submit" name="submit">
</form>

</body>

10



Use the form attribute to

from flask import Flask, render template, request

app = Flask(‘app’)

@app.route(‘/’, methods=[‘'GET’, ‘POST'])
def print name():
if request.method == ‘POST’:
name = request.form[“field name”])
print (name)

return render template(‘simple form.html’)

app.run(host='0.0.0.0’, port=8080)

post input data to our

Flask server
<html>

<head>
<title> My Form </title>
</head>
<body>
<form action="/" method="POST">
<input type="text" name="field name" ><br>
<input type="submit" name="submit">
</form>
</body>

Specify which route to post
</html>

data to using “action”




Activity 2

1. Extend Activity 1 to create a new route (‘/addstudent’) that displays a simple

form for “registering” a new student for the class.
a. This form should take in a name, email, and ID for a new student and insert to the database

1. Once you submit the form, you should be able to verify that it worked by
going back to the default ('/’) route to see the new student being displayed

12



